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Abstract

Several experimental therapeutics have been demonstrated to be safe and effective in animal models of
neurological disorders, but have failed when they reached the clinic. Postulated factors that affected the poor
clinical outcomes include the lack of proper treatment controls and clinically relevant animal models. This failure of
lab-to-clinic translation has plagued many neuroprotective drugs for stroke. With this in mind, the stem cell therapy
field has cautiously approached translating stem cell products for clinical application, in that a negative clinical trial
may hinder the entire regenerative medicine therapeutics. Here, we discuss the many translational challenges
associated with stem cell therapy in the setting of stroke.
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Background
Rehabilitation therapy and stem cell transplantation
The combination treatments of stem cell therapy and re-
habilitation therapy remain a key challenge to accomplish
optimal clinical benefits for stroke patients. Of note, the
most recent consortium of Stem Cell Therapeutics as an
Emerging Paradigm for Stroke or STEPS 3 made strides in
analyzing stem cell therapy with rehabilitation therapy to
identify their individual therapeutic effects [1, 2], as well
as examining whether a combination of these two treat-
ments could improve stroke outcomes. Despite stroke re-
habilitation being a standard treatment in stroke patients
[3], laboratory studies have largely overlooked the use of
rehabilitation therapy in experimental trials, this marks a
serious disconnect between the laboratory and clinical set-
tings. Many studies have shown that rehabilitation, or ex-
ercise, positively impacts the effects of endogenous stem
cell therapy. The concept that exercise led to enhanced
neurogenesis was brought to the forefront by Dr. Gage
and colleagues [4]. Specifically, this paper shows that new
cells nearly doubled in the hippocampus following 12 days
of daily running. Additionally, Dr. Mattson’s paper “take
away my food, and let me run” emphasizes the benefits of
exercise and healthy diet [5]. Based on these pioneering la-
boratory studies, exercises such as running has been

shown to combat the effects of age-related disorders, in-
cluding AD [6], PD [7], stroke [8], and TBI [9]. Our paper
in 2007 [10], shows detrimental effects of suppressing ex-
ercise were observed using the hindlimb suspension
model, where animals were subjected to hindlimb suspen-
sion for 2 weeks. Following the inactivity period, an exam-
ination of the animal’s brains revealed decreased
neurogenesis in both the hippocampus and SVZ. These
animals displayed the lack of exercise approximately re-
sembling the example of aged patients who lack a daily ex-
ercise regimen. In accordance with this paradigm, younger
animals exhibited less severe deficits in hippocampal
neurogenesis following the hindlimb suspension, in com-
parison to the older group [11]. The hindlimb suspension
model was altered to examine the effects of a “restraint
stress” (animal placed in conical tube with little to no dir-
ectional movement) [12, 13], in which females exhibited
more severe hippocampal effects [14]. Perhaps future
studies, as in our paper [15], will integrate rehabilitation
therapy with existing models of age-related disorders (e.g.,
AD, stroke, PD, TBI) and provide further insight into the
relationship between lack of physical activity and neuro-
genesis, leading to novel theories on functional benefits of
rehabilitation and stem cell therapy [16].

Finding viable stem cell sources
Due to a federal moratorium on NIH funds, throughout
the early 2000s, directed at embryonic stem cell
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research, adult stem cells have approximately a 10-year
head start over ES cells simply due to lack of funding.
Therefore, adult stem cells, specifically bone marrow-
derived mesenchymal stromal cells, are the most attract-
ive stem cell source with potential clinical applications.
A small portion of clinical trials are already testing adult
stem cells in stroke patients. We already have an estab-
lished understanding of the effective cell does, pathway
and timing of injection as well as an adequate safety ana-
lysis of these cells. The method of transport is still not
fully understood, which warrants further research into
this mechanism. This data we gain from adult stem cells
may contribute to the modification and advancement of
ES cells’ clinical application, as well as other cell sources,
as in iPSCs. Additionally, it is necessary to keep an open
mind in regards to other potential cell sources, including
very small embryonic-like (VSELs) [17], multilineage-
differentiating stress-enduring (Muse) cells [18], and the
recently described region-selective pluripotent stem cells
(rsPSCs) [19]. While bioethical issues spark controversy
with the latter cells, the most attractive source of stem
cells depends primarily on the cells’ therapeutic poten-
tial. Despite the importance of known entities of stem
cells for preliminary benchmark to qualify for trans-
plantable stem cells, our aim is to demonstrate that stem
cells are beneficial and effective. Although there is a tested
population of stem cells, they are neither safe or effective
which ultimately invalidates any possible clinical benefits
An evaluation of the currently available stem cells may
present a novel view of the ideal cell type for specific
stroke-targeted disease stage and pathology [20].

Safe and effective stem cell delivery route
The most favorable cell delivery route depends primarily on
which disease is targeted. This area is where pre-clinical re-
search is propelling the decisions regarding the delivery
pathway. As found through experimental stroke, stem cells
use the chemokine signal CXCR4-SDF1 to reach the ische-
mic brain from the periphery, where they’re injected.
The peak of the chemokine signal appears within days

after stroke, although remaining elevated for long pe-
riods, which indicates that intravenous or intra-arterial
routes of administration are preferred for acute stroke.
However, the intracerebral (IC) approach is the ideal
method of administration for chronic stroke patients be-
cause the chemokine signal is not as strong as the early
stage [21]. Several factors must be considered in determin-
ing the choice of stem cell transplant route. Considering
that stroke is now regarded as a chronic disease, repeated
transplants may be required to combat the several second-
ary cell death events such as inflammation. Further re-
search is still necessary to examine the safety and efficacy
of these repeated transplants. Additionally, studies have
demonstrated that CNS bioavailability may be necessary

for successful treatment of stroke [22], and that targeting
the spleen to reduce the secondary cell death events may
be equally beneficial for functional recovery [23]. Due to
this, numerous aspects must be taken into account for de-
ciding the stem cell transplant pathway.

Clinically relevant animal models for testing cell therapy
Animal models of stroke, specifically small rodents, have
played a vital role in translational from the laboratory to
the clinic [24]. However, we recognize the limitations of the
rodent stroke models, as demonstrated by many promising
laboratory results which are unsuccessful in the clinical set-
ting. Numerous research groups attribute this to the small
white matter in the rodent brain that is inconsistent with
the structure of the human brain. While recent studies have
created specific models to produce white matter injury in
rodents [25, 26], pursuing alternative models, such as larger
animals, may increase success of clinical translation if these
issues of misrepresentation from the rodent models hinder
the translation from the laboratory to the clinic.
Evaluating motor function is a popular measure of

functional recovery in animal models to assess the out-
come of stem cell therapy [27–29]. This measure has
proven to be a cost-effective approach given the reduced
time and staff required to complete the motor task test-
ing of the animals. Our research team also integrated
cognitive function as a measure of functional outcome,
given that stroke patients can also suffer from behavioral
deficits. Contrary to motor function, this testing involves
the time consuming task of organizing and retesting
phases of experiments. Despite this, one must be willing
to invest the time, staff, and labor to complete both
motor and cognitive function tests in order to accurately
evaluate the full range of therapeutic potential, safety
and effectiveness of stem cell therapy. However, it is ne-
cessary to tailor the type of tests to the stroke model be-
cause certain models, such as the distal MCA ligation
model that induces localized cortical damage, may not
display as strong results as other models would.

Conclusions
Challenges of translating animal studies of stem cell
therapies to clinical trials
As mentioned previously, there are several challenges in
translating animal studies of stem cell therapies to clinical
trials [30, 31]. The combination of stem cell therapy and
rehabilitation must be further examined and further devel-
opment of transplant procedures, such as delivery route
and repeated transplants, will accomplish optimal clinical
benefits for stroke patients. Another challenge is the abil-
ity to recognize that specific animal models and functional
endpoints reflect particular stroke symptoms and stages.
Several key clinical trials have helped shape the field of

cell therapy in recent years, for example, the researchers
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who carried out the Parkinson’s disease clinical trials [32–
36] providing the foundation for the first cell therapy in
stroke patients [37, 38]. Their intracerebral transplantation
of NT2N cells has provided a model for current clinical tri-
als in chronic stroke patients [39–43]. Additionally, studies
have explored the peripheral transplantation of stem cells
for acute stroke patients [40, 42], which has paved the way
for future clinical studies.

Adult stem cells pose limited ethical barriers, which are
principally related to the financial compensation related to
conscientious clinics functioning as a ‘medical tourism’ in-
dustry. However, for ES cells, the main ethical dilemma
remains the ethics of destroying embryos to harvest the
stem cells. Also, whether this novel treatment will be cov-
ered by health insurance will be a major obstacle, as the
therapy can cost hundreds of thousands of dollars. If not,
then the challenge becomes how to provide this therapy
to the financially struggling areas of our community.
Anticipated clinical news over the next few years on the

continuing clinical trials will provide valuable information
for cell therapy and its future applications. The original
‘bench-to-bedside’ approach, translating from the labora-
tory to the clinical setting must be accompanied by ‘bed-
side-to-bench’ assessments by re-examining and improving
the transplant regimen in the lab to further the efficacy of
additional clinical trials. However, this method is not well
received by many in the industry and regulatory groups,
causing the laborious efforts and significant delays in the
lab to evaluate safety and efficacy to be directed towards
that ‘first and only’ translation of stem cell therapy to the
clinical setting in mind, overly cautious to avoid any failures
that will result in setbacks throughout the field of regenera-
tive medicine.
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