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Abstract

Background: Despite advances in decompressive craniectomy (DC) for the treatment of traumatic brain injury (TBI),
these patients are at risk of having a poor long-term prognosis. The aim of this study was to predict 1-year
mortality in TBI patients undergoing DC using logistic regression and random tree models.

Methods: This was a retrospective analysis of TBI patients undergoing DC from January 1, 2015, to April 25, 2019.
Patient demographic characteristics, biochemical tests, and intraoperative factors were collected. One-year mortality
prognostic models were developed using multivariate logistic regression and random tree algorithms. The overall
accuracy, sensitivity, specificity, and area under the receiver operating characteristic curves (AUCs) were used to
evaluate model performance.

Results: Of the 230 patients, 70 (30.4%) died within 1 year. Older age (OR, 1.066; 95% CI, 1.045–1.087; P < 0.001),
higher Glasgow Coma Score (GCS) (OR, 0.737; 95% CI, 0.660–0.824; P < 0.001), higher D-dimer (OR, 1.005; 95% CI,
1.001–1.009; P = 0.015), coagulopathy (OR, 2.965; 95% CI, 1.808–4.864; P < 0.001), hypotension (OR, 3.862; 95% CI,
2.176–6.855; P < 0.001), and completely effaced basal cisterns (OR, 3.766; 95% CI, 2.255–6.290; P < 0.001) were
independent predictors of 1-year mortality. Random forest demonstrated better performance for 1-year mortality
prediction, which achieved an overall accuracy of 0.810, sensitivity of 0.833, specificity of 0.800, and AUC of 0.830 on
the testing data compared to the logistic regression model.

Conclusions: The random forest model showed relatively good predictive performance for 1-year mortality in TBI
patients undergoing DC. Further external tests are required to verify our prognostic model.

Keywords: Decompressive craniectomy, Traumatic brain injury, One-year mortality, Prognostic model, Random
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Background
TBI is a common cause of death and disability world-
wide affecting all age groups [1]. Decompressive cra-
niectomy (DC), surgically removing a component of the
skull, has been performed in TBI patients for many years
[2, 3], especially those with high intracranial pressure
(ICP) [4], which can effectively increase cerebral perfu-
sion pressure. Two randomized clinical trials have been
conducted, the DECRA [5] and RESCUEicp [6] trials,
which focused on the prognosis of TBI patients after
DC. DECRA demonstrated that early bifronto-temporo-
parietal DC decreased the length of stay in the ICU but
was associated with unfavorable outcomes; RESCUEicp
reported that DC in patients with TBI and refractory
intracranial hypertension led to lower mortality.
In previous research, short-term outcome predictive

scoring models, discharge status [7] and 30-day mortal-
ity [8], were well established in TBI patients with DC.
However, a long-term mortality prediction model is a
crucial issue that has not received sufficient attention.
Despite several studies on long-term outcomes, such as
predictors of 1-year mortality in older brain-injured pa-
tients [9] and functional outcomes from 3 to 24 months
following severe brain injury [10], the study population
was not specifically focused on patients after DC. It is
necessary to identify the predictors of long-term mortal-
ity in TBI patients after DC to gain a better understand-
ing of the progression of the disease, contributing to
better daily care and improvements in the quality of life
of patients.
Machine learning has been widely used in disease

diagnosis and prognosis prediction [11, 12]. For example,
machine learning was applied to predict in-hospital mor-
bidity and mortality after TBI, which demonstrated rela-
tively good predictive performance [13]. To date, the use
of machine learning techniques to predict the long-term
prognosis of TBI patients after DC has rarely been ex-
plored. Thus, the purpose of this study was to develop
prognostic models to predict the 1-year mortality of TBI
patients undergoing DC by using logistic regression and
random tree models.

Methods
Patient population
This retrospective study was approved by the Ethics
Committee of Tangdu Hospital, Fourth Military Medical
University. We reviewed 947 consecutive TBI patients
treated at Tangdu Hospital from January 1, 2015, to
April 25, 2019. Our main inclusion criterion covered pa-
tients who underwent DC with a history of TBI. The
main indications and approach were described in previ-
ous studies [14, 15]. The exclusion criteria were as fol-
lows: (1) an interval from injury to admission of more
than 24 h; (2) death in the hospital; (3) other severe

systemic diseases, such as malignant tumors, cirrhosis,
and uremia; and (4) loss to follow-up.

Variables and data collection
The following data were extracted from the registry
database by five study nurses: patient demographic char-
acteristics; Glasgow Coma Score (GCS) score in admis-
sion; biochemical tests including aPTT, INR, platelet
counts, D-dimer, fibrinogen, glucose, red blood cell, and
neutrophil/lymphocyte ratio (NLR); initial CT scan char-
acteristics including contusion volume, subarachnoid
hemorrhage (Fisher scales), midline shift, and basal
cistern status; perioperative bleeding; and worsening
neurologic condition, including mechanical ventilation,
tracheotomy, deep venous thrombosis, and hypotension
that needed noradrenaline to correct. INR, aPTT, and
platelet counts were used to define traumatic coagulopa-
thy, according to a previous study [16], aimed at simpli-
fying the prognostic model. Coagulopathy was defined as
an aPTT > 36 s and/or a PT in INR > 1.2 and/or a plate-
let count < 100 × 109 per liter.

Prognostic model
Of the 230 patients, 172 patients (75%) were randomly
selected for training, and the remaining 58 patients
(25%) were selected for testing. The random seed was
set as 66,511. The ratio of non-survivors to survivors
was 1:2, so synthetic minority oversampling technique
(SMOTE) was used to balance the training data. We
conducted a performance comparison of the logistic re-
gression and random tree models. The 10-fold cross-
validation, repeated three times, was performed by using
the original 75% of the data treated as training data. Fea-
tures were selected by using the univariate logistic
regression method. Hyperparameter optimization was
achieved by the grid search method. Three parameters
were determined for the random tree model: “Gini”
impurity criterion, mtry = 4, and tree = 100. We deter-
mined the number of mtry by grid optimization algo-
rithm. An open-source programming language R 3.6.1
and an efficient machine learning tool GraphLab Create
were used for machine learning coding.
We compared the predictive performance of the logis-

tic regression and random tree models according to ac-
curacy, sensitivity, specificity, and AUC. The AUCs of
the two models on the testing data are the results of
back-substituting the training set to the models. The
definitions of accuracy, sensitivity, and specificity were
described in a previous study [17].

Statistical analysis
Categorical variables are expressed as frequencies (per-
centages), and continuous variables with skewed distri-
butions are presented as medians and interquartile
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ranges (IQRs). Univariate logistic regression was used to
identify significant predictive variables (P < 0.05), which
were entered into the multivariate regression by using
the forward LR method to determine the independent
risk factors for 1-year mortality. A nomogram model
was developed to predict the probability of 1-year mor-
tality. All data were analyzed with the statistical software
SPSS 20.0 (IBM, New York, NY).

Results
Patient population
Of the 947 patients treated in this research center during
the study period, 306 patients who underwent DC were
identified. According to our inclusion and exclusion
criteria, 230 patients were enrolled. By February 26,
2020, 89 (38.7%) patients had died, and 141 (61.3%) had
survived. The survival analysis showed that the 3-month
survival rate was 0.826, the 6-month survival rate was
0.774, the 1-year survival rate was 0.695, and the 3-year
survival rate was 0.623 (Fig. 1).
The patient demographic and clinical characteristics

are summarized in Table 1. Seventy patients (30.4%)
died within 1 year of undergoing DC. The median age
was 59 years (IQR, 50–65), and 16 (22.86%) patients
were female. In this study, the most frequent mechanism
of injury was motor vehicle accidents (114 patients;
49.57%); falling was also common (82 patients; 36.65%).
The median GCS score at admission was 4.5 (IQR, 3–7).
The total biochemical tests were as follows: Fibrinogen
was 1.86 g/L (IQR, 1.39–2.27). D-dimer was 42.56 mg/
mL (IQR, 18.47–98.10). Fifty-one (22.17%) patients had
coagulopathy disorders. Abnormal glucose (>8.33 mmol/

L) and red blood cells (man >5.5×1012/L or <4.0×1012/L,
woman >5.0×1012/L or <3.5×1012/L) were shown in 159
(69.13%) patients and 56 (24.56%) patients, respectively.
The N/L ratio was 14.55 (IQR, 8.29–24.57). In the initial
CT scan characteristics, the contusion volume was 15.99
cm3 (IQR, 0–40.82), and subarachnoid hemorrhage
(Fisher scale) was 2 (0–3) in total. Midline shift and
completely effaced basal cisterns were noted in 97
(42.17%) and 40 (17.39%) patients, respectively. Peri-
operative bleeding was more than 750 mL shown in 178
(77.39%) patients. Worsening neurologic conditions are
listed as follows: mechanical ventilation, tracheotomy,
deep venous thrombosis, and hypotension requiring
noradrenaline were noted in 84 (36.52%), 102 (44.35%),
22 (9.57%), and 39 (16.96%) patients, respectively.

Prognostic factors predicting 1-year mortality in the
univariate and multivariate analyses
Univariate analyses of the relationship between clinical
variables and 1-year mortality are shown in Table 1. Age
(P < 0.001), lower GCS (P < 0.001), higher D-dimer (P <
0.001), coagulopathy (P= 0.027), hypotension (P= 0.021),
completely effaced basal cisterns (P= 0.004), and
perioperative bleeding > 750 mL (P = 0.049) were associ-
ated with 1-year mortality. Table 2 lists the results of the
multivariate regression analysis to predict 1-year
mortality. Older age (P < 0.001), lower GCS (P < 0.001),
higher D-dimer (P = 0.015), coagulopathy (P < 0.001),
hypotension (P < 0.001), and completely effaced
basal cisterns (P= 0.004) were independent predic-
tors of 1-year mortality.

Fig. 1 Kaplan-Meier survival curves for TBI patients undergoing DC
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Next, we incorporated all independent predictors iden-
tified in multivariate regression analysis to create nomo-
grams, as shown in Fig. 2. The nomogram was
constructed by setting a score to each parameter with a
point ranging from 0 to 100. Summing the points ar-
ranged for each predictor yields the total score, which is
ultimately converted into an individual probability of 1-
year mortality (from 1 to 99%). Based on the condition
of the patients, this nomogram can predict 1-year
mortality both simply and intuitively.

Prediction performance of logistic regression and random
tree models
To identify the importance of each predictor for 1-year
mortality, we chose the feature selection method by ap-
plying the random forest algorithm. Three parameters
were identified as the most important for predicting 1-
year mortality: age, GCS, and D-dimer (Fig. 3). Interest-
ingly, perioperative bleeding was identified as the last
associated factor for 1-year mortality.
Their ROC and AUC were calculated to evaluate their

discriminative ability (Fig. 4). To evaluate the prediction
performance of the logistic regression and random tree

models, 10-fold cross-validation was performed on the
training data (Table 3). Before SMOTE was used to
balance the training data, we developed the logistic
regression model. On the training data, it achieved an
overall accuracy of 0.750, sensitivity of 0.731, specificity
of 0.758, and AUC of 0.770 at the optimal cutoff point
(0.307); on the testing data, it achieved an overall accur-
acy of 0.672, sensitivity of 1.000, specificity of 0.525, and
AUC of 0.765 when at optimal cutoff point (0.195).
Next, we balanced the training data by using SMOTE.
The logistic regression model achieved an overall accur-
acy of 0.756, sensitivity of 0.615, specificity of 0.817, and
AUC of 0.760 on the training data and an overall accur-
acy of 0.741, sensitivity of 0.889, specificity of 0.675, and
AUC of 0.843 on the testing data at the optimal cutoff
point. The random forest model achieved an overall ac-
curacy of 0.983, sensitivity of 1.000, specificity of 0.975,
and AUC of 0.998 on the training data and an overall ac-
curacy of 0.810, sensitivity of 0.833, specificity of 0.800,
and AUC of 0.830 on the testing data at the optimal cut-
off point. The accuracy, sensitivity, specificity, and AUC
at the cutoff point (0.5) of the three prognostic models
are shown in Table 3.

Table 1 Univariate logistic regression analysis of 1-year mortality

Total (n=230) Survivor (n=160) Non-survivor (n=70) Odds ratio 95% CI P value

Age, years 52.50 (42.00–60.00) 50.50 (38.00–58.00) 59.00 (50.00–65.00) 1.050 (1.025–1.076) <0.001

Female 58 (25.22%) 42 (26.25%) 16 (22.86%) 0.832 (0.430–1.610) 0.586

Mechanism of injury 0.855 (0.632, 1.158) 0.312

Motor vehicle accident 114 (49.57%) 73 (45.63%) 41 (58.57%)

Fall 82 (36.65%) 63 (39.38%) 19 (27.14%)

Strike 7 (3.04%) 5 (3.13%) 2 (2.86%)

Others 27 (11.74%) 19 (11.88%) 8 (11.43%)

GCS score 6.00 (4.00–8.00) 7.00 (4.00–8.00) 4.50 (3.00–7.00) 0.798 (0.704–0.904) <0.001

Fg (g/L) 1.86 (1.39–2.27) 1.86 (1.44–2.37) 1.81 (1.23–2.18) 0.769 (0.544–1.087) 0.137

D-dimer (mg/L) 42.56 (18.47–98.10) 37.26 (16.61–76.46) 75.17 (31.41–131.40) 1.009 (1.005–1.014) <0.001

Coagulopathy 51 (22.17%) 29 (18.13%) 22 (31.43%) 2.070 (1.086–3.947) 0.027

GLU >8.33mmol/L 159 (69.13%) 110 (68.75%) 49 (70.00%) 1.061 (0.576–1.954) 0.85

RBC (man >5.5×1012/L or <4.0×1012/L,
woman >5.0 ×1012/L or <3.5×1012/L)

56 (24.56%) 40 (25.32%) 16 (22.86%) 0.874 (0.450–1.697) 0.691

N/L ratio 14.55 (8.29–24.57) 14.12 (8.59–22.09) 14.85 (7.38–27.08) 1.008 (0.987–1.030) 0.448

Midline shift >0 97 (42.17%) 73 (45.63%) 24 (34.29%) 0.622 (0.347, 1.114) 0.109

Completely effaced basal cisterns 40 (17.39%) 20 (12.50%) 20 (28.57%) 2.800 (1.392–5.632) 0.004

Subarachnoid hemorrhage (Fisher scales) 2.00 (0.00–3.00) 2.00 (0.50–3.00) 2.00 (0.00–3.00) 0.929 (0.759–1.138) 0.478

Contusion volume (cm3) 15.99 (0.00–40.82) 14.48 (0.00–44.20) 20.13 (0.00–38.01) 0.999 (0.993–1.005) 0.822

Perioperative bleeding >750 mL 178 (77.39%) 118 (73.75%) 60 (85.71%) 2.136 (1.002–4.550) 0.049

Mechanical ventilation 84 (36.52%) 53 (33.13%) 31 (44.29%) 1.605 (0.903–2.852) 0.107

Tracheotomy 102 (44.35%) 70 (43.75%) 32 (45.71%) 1.083 (0.616–1.904) 0.783

Deep venous thrombosis 22 (9.57%) 15 (9.38%) 7 (10.00%) 1.074 (0.418–2.762) 0.882

Use of noradrenaline to treat hypotension 39 (16.96%) 21 (13.13%) 18 (25.71%) 2.291 (1.131–4.640) 0.021
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Discussion
In our study, we found that older age, lower GCS, higher
D-dimer, coagulopathy, hypotension, and completely ef-
faced basal cisterns were independent predictors of 1-year
mortality in patients with TBI after DC. Compared to the
logistic regression model, the random tree model pre-
sented a better performance on the training data with re-
spect to accuracy, sensitivity, specificity, and AUC
(regardless of whether the cutoff point was 0.5 or the

optimal point). So did the random tree model in regard to
accuracy, sensitivity, and specificity on the testing data
when the cutoff point was 0.5. Although the sensitivity of
the random tree model was inferior to that of the logistic
regression model on the testing data at the optimal cutoff
point, the accuracy and specificity of the random tree
model were superior. The AUCs of the two models are
similar on the testing data. Overall, this finding suggests
that the random tree is a valuable and accurate model to

Table 2 Multivariate logistic regression analysis of 1-year mortality

Variable β coefficient Odds ratio 95% CI P value

Age 0.064±0.010 1.066 1.045–1.087 <0.001

GCS score −0.305±0.057 0.737 0.660–0.824 <0.001

D-dimer 0.005±0.002 1.005 1.001–1.009 0.015

Coagulopathy <0.001

No 1.0 (referent)

Yes 1.087±0.253 2.965 1.808–4.864

Use of noradrenaline to treat hypotension <0.001

No 1.0 (referent)

Yes 1.351±0.293 3.862 2.176–6.855

Completely effaced basal cisterns <0.001

Normal 1.0 (referent)

Abnormal 1.326±0.262 3.766 2.255–6.290

Fig. 2 Nomogram for predicting 1-year mortality unfavorable outcome in TBI patients undergoing DC. The total points are calculated as the sum
of the individual scores of 6 variables included in the nomogram. UNTH, use of noradrenaline to treat hypotension; CEBC, completely effaced
basal cisterns
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predict 1-year mortality in TBI patients after DC.
Additionally, our study chose the time of 1-year mortality
based on the survival analysis of TBI patients undergoing
DC, which showed that the mortality rate within 1 year
after discharge was very high. Since we turned the spot-
light on the long-term outcomes of TBI patients, patients
who died in the hospital were excluded. The predictors of
inpatient death and postdischarge mortality were dispar-
ate, as shown by a previous study [9]. Thus, our study on
1-year mortality, which excluded patients who died in the

hospital, could show better predictive performance to
some extent.
Age and GCS, which were already found to be import-

ant predictors of TBI, were also confirmed in our study
[13, 18]. Tian et al. [7] identified that age was one of the
independent risk factors for discharge status after DC,
and Tang et al. [8] also observed that age was a risk fac-
tor for 30-day mortality after DC. Combined with our
research, older age is considered a risk factor for both
short-term and long-term outcomes of TBI patients after

Fig. 3 Variable importance measures for each predictor of 1-year mortality derived from random forest

Fig. 4 Receiver operating characteristic curves for 1-year mortality prediction in the training sample and test sample
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DC. Older people tend to suffer from more basic dis-
eases than young people, and the rehabilitation of the
body is poorer after TBI. GCS, which was similar to age,
was also a powerful predictor for the outcomes of TBI
after DC [8, 19]. D-dimer, a degradation product of fi-
brinogen, reflects the level of fibrinolysis in the body.
Many studies found that higher D-dimer at admission
was associated with a higher risk of progressive
hemorrhagic injury [20, 21], while a meta-analysis of the
prognostic role of D-dimer level on admission in TBI pa-
tients found no significant relationship between D-dimer
and the risk of poor functional outcome at 3 months
[22]. In our study, higher D-dimer was one of the pre-
dictors for 1-year mortality after DC. In our opinion, the
prognostic role of D-dimer may be related to the study
population and specific outcomes. Secondary coagulopa-
thy after TBI is considered an important factor for un-
favorable outcomes [23, 24], and our results also
confirmed this finding. TBI-induced coagulopathy is very
common, ranging from 7 to 54% [25, 26]. Coagulopathy
generated by TBI is a systemic manifestation of local in-
jury [27]. Procoagulant vesicles (including tissue factors,
cardiolipin, vWF) from damaged brain tissue are re-
leased into the systemic circulation [28–30], disrupting
the balance between coagulation and anticoagulation.
This distinct pathogenetic pathway has attracted increas-
ing attention, and how to intervene in this process is
crucial for the prognosis of TBI patients. Hypotension
was another risk factor for 1-year mortality. The prog-
nostic role of hypotension in TBI is poorly elaborated.
Tang et al. [8] found that intraoperative hypotension
was associated with 30-day mortality in TBI patients
after DC. In our study, we recorded the incidence of
hypotension throughout the course of the disease. Add-
itionally, noradrenaline was injected to maintain the vital
signs in patients with hypotension. Our study suggests

that hypotension is a crucial predictor of long-term
prognosis that should not be ignored in TBI patients
after DC. However, some more specific questions be-
tween hypotension and the outcome of TBI need to be
addressed. For example, it is unclear whether the course
of hypotension in patients with TBI is associated with
patient outcomes. The risk factors underlying
hypotension in TBI need to be explored further. Com-
pletely effaced basal cistern status, which represents se-
verely elevated ICP, was found to be an important
predictor of outcome in a previous study [8, 31]. Basal
cistern effacement is closely associated with pupillary re-
activity midline shift. Thus, it can represent a uniquely
useful neuroimaging characteristic to guide intervention
in TBI [32]. Our study focused on developing prognostic
models of predicting the 1-year mortality of TBI patients
undergoing DC. The TBI patients who underwent DC or
not were different in some characteristics. And further
studies are needed to explore these differences.
Many studies on TBI have been conducted using

modern machine learning algorithms owing to their
good prediction performance. Matsuo et al. [13] dem-
onstrated that random forest showed good perform-
ance for poor outcome prediction at discharge and
ridge regression for in-hospital mortality prediction in
TBI, both of which achieved an accuracy of almost
0.9. Based on the feature selection method, age and
GCS appeared to be the most important predictors
for both poor outcome and mortality in their study,
which was consistent with our findings. A total of
232 patients with TBI were included and separated
into training data and test data, which was compar-
able to our samples of 230 patients. The prediction of
mortality was better than our results, which were
0.886 accuracy and 0.875 AUC on the testing data.
The difference in performance is mainly due to the

Table 3 The 1-year mortality prediction performance of logistic regression models and random forest models for the training
sample and test sample

Cutoff Accuracy Sensitivity Specificity AUC

Logistic regression Train data 0.5 0.744 0.346 0.917 0.770

Optimal (0.307) 0.750 0.731 0.758

Test data 0.5 0.655 0.167 0.875 0.765

Optimal (0.195) 0.672 1.000 0.525

SMOTE logistic regression Train data 0.5 0.686 0.692 0.683 0.760

Optimal (0.641) 0.756 0.615 0.817

Test data 0.5 0.741 0.722 0.750 0.843

Optimal (0.405) 0.741 0.889 0.675

SMOTE random forest Train data 0.5 0.959 1.000 0.942 0.998

Optimal (0.596) 0.983 1.000 0.975

Test data 0.5 0.828 0.778 0.850 0.830

Optimal (0.487) 0.810 0.833 0.800

Cui et al. Chinese Neurosurgical Journal            (2021) 7:24 Page 7 of 9



prediction of death at different times, and there is no
doubt that long-term mortality is harder to predict
than in-hospital mortality. Rughani et al. [33] used an
artificial neural network to predict the in-hospital sur-
vival of TBI patients, which achieved an accuracy of
0.878 and an AUC of 0.860. They included 11 vari-
ables in the model: age, sex, total GCS score, individ-
ual components of the GCS score at the scene of
injury and emergency department, and first systolic
blood pressure. Nonetheless, some vital parameters,
such as biochemical tests, CT scan characteristics,
and neurologic worsening conditions, were absent
from their model. Although one study predicted 18-
month mortality in severe TBI after DC using the
IMPACT prognostic model [19], whose AUC was
0.77, our random tree prediction model achieved
AUCs of 0.998 and 0.830 on the testing and training
data, respectively. This suggests that machine learning
models perform better in outcome prediction than
traditional logistic regression models. At present, ma-
chine learning algorithms have been increasingly used
in the prognosis of TBI [13, 34, 35], and they enable
us to optimize the treatment strategy and provide
better daily care.

Limitations
There are several limitations to our study. First, it was a
single-center, retrospective, and nonrandomized study,
so selection bias may exist. Second, we did not include
ICP data in this study because ICP monitoring was not
performed on every patient. Thus, we could not include
this vital variable to avoid apparent selection bias. An-
other limitation is that some information about the pa-
tient after discharge, such as rehabilitation therapy, was
absent, but this provides an opportunity for prospective
research to analyze this variable. Finally, our prognostic
model was mainly targeted at TBI patients undergoing
DC, so the performance of our model may decrease
when it is applied to all TBI patients.

Conclusions
Our findings confirm that older age, lower GCS, higher
D-dimer, coagulopathy, hypotension, and completely ef-
faced basal cisterns were associated with 1-year mortal-
ity. The random forest model showed relatively good
predictive performance for 1-year mortality, which
achieved an overall accuracy of 0.810, sensitivity of
0.833, specificity of 0.800, and AUC of 0.830 on the test-
ing data. Our results indicated that machine learning
achieved good performance for TBI outcomes. By virtue
of machine learning with more accurate prediction per-
formance, we can provide TBI patients with better preci-
sion medicine and care directions.
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