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Abstract

Bone morphogenetic protein belongs to transcription growth factor superfamily β; bone morphogenetic protein
signal pathway regulates cell proliferation, differentiation, and apoptosis among different tissues. Cerebrovascular
system supplies sufficient oxygen and blood into brain to maintain its normal function. The disorder of
cerebrovascular system will result into serious cerebrovascular diseases, which is gradually becoming a major threat
to human health in modern society. In recent decades, many studies have revealed the underlying biology and
mechanism of bone morphogenetic protein signal pathway played in cerebrovascular system. This review will
discuss the relationship between the two aspects, aiming to provide new perspective for non-invasive treatment
and basic research of cerebrovascular diseases.
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Introduction
Different from other organs in human, the brain,
accounting only for 2% of body weight, needs about
20% circulating blood supplied through cerebrovas-
cular system. Thus, the natural development of vas-
cular embryogenesis is critical in normal function
maintenance of cerebrovascular system. The cerebro-
vascular vessel consists of 3 layers: the intima layer,
the median layer, and the outer layer. Under physical
condition, the vessel system keeps in a homeostasis
state, and the hemodynamic force is in balanced
with vessel protective mechanism. The abnormal vas-
cular embryonic development or imbalance between
hemodynamic force and vessel protective effect will

results into serious cerebrovascular diseases (CVD).
In modern society, cerebrovascular diseases, includ-
ing intracranial aneurysm (IA), cerebrovascular
malformation, and ischemic disease, have become
one of the main causes of disability and mortality,
bringing much economy and psychology burden to
families [1, 2].
Bone morphogenetic protein (BMP) is a member of

transcription growth factor superfamily β (TGF-β),
which was primarily evidenced to promote ectopic bone
formation in rats [3]. With the deepening of research,
researchers have found that BMP signal pathway plays a
respective role in regulating cell proliferation, differenti-
ation, migration, and apoptosis in different diseases and
tissues [4]. Previous studies on BMP signaling pathway
mainly focused on skeletal system diseases and tumor-
related diseases [5, 6]. In recent years, the abnormal ex-
pression of BMP signaling pathway has been revealed in
a series of vascular diseases [7]. Many reviews have dedi-
cated to describe the relationship between BMP
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signaling and vascular diseases, and for CVD, less re-
views can be retrieved [7, 8]. This review will conclude
the recent relevant studies focusing on the relationship
between BMP signal pathway and hemodynamics, cere-
brovascular embryonic development, and the typical
CVD in cerebrovascular system. It is hoped that this
review will bring new research perspective for the
research and treatment of CVD.

Overview of BMP signal pathway
The introduction of BMP
Till now, 33 ligands have been evidenced in TGF-β, and
among them, more than 20 ligands belong to BMP
superfamily, which can be further divided into BMP-2/4
protein, BMP-5/6/7/8 protein, growth and differentiation
factor (GDFs)-5/6/7, BMP-9/10 protein, etc. The activity
BMP is regulated and modulated by many molecules
both intracellular and extracellular [9]. In physiology
state, various BMP signal pathway antagonists exist in
different tissues of human body. Normally, these antago-
nists restrain BMP activity by inhibiting the combination
of BMP and its targeted receptor [10]. Under such cir-
cumstance, the constant expression of antagonists is
conducive to maintain human homeostasis. Once the
expression of these antagonists is restrained or in a dis-
order state, the abnormal BMP signal pathway activation
will become one of the initiating factors of various dis-
eases [11, 12]. For cerebrovascular system, BMP-2/3/4/
6/7/910 were the most frequent reported by previous
researches [13–15].

BMP receptors and co-receptors on cell membrane
Like other proteins in the TGF-β superfamily, BMP can
bind to two kinds of serine threonine kinase receptors,
known as BMP receptor I (BMPRI) and BMP receptor II
(BMPRII). BMPRI and BMPRII share similar structures,
which are composed of intracellular domain, transmem-
brane domain, and extracellular domain, and the intra-
cellular domain possesses serine threonine kinase
activity. The affinity of type I receptor is higher than that
of type II receptor, and its receptor affinity is greatly en-
hanced after the formation of receptor heterotetrameric
complexes [16]. In addition to BMPRI and BMPRII,
BMP can bind to activin receptor 2A (ACVR2A) and
activin receptor 2B (ACVR2B) to activate downstream
signaling pathways [17]. ACVR2A and ACVR2B recep-
tors are expressed in many tissues of human body. The
signal pathway is then activated when BMP binds to its
targeted receptor, initiating the following downstream
effect. In addition to BMP receptors, a series of co-
receptors have been reported to modulate the activation
of BMP signaling. Endoglin and betaglycan are the main
2 co-receptors being evidenced to exert significant role
in vascular diseases [18, 19].

Smad-mediated and non-Smad-mediated BMP signal
pathway
BMP signal pathway mediated via Smad way is the car-
dinal signal transduction pattern in regulating cell func-
tion. According to their specific function, Smad Protein
can be divided into receptor regulated Smad (R-Smad),
inhibitory Smad (I-Smad), and common mediator Smad
[20]. Once the BMP receptor complex is formed, the
BMPR II receptor phosphorylates BMPR I receptor. The
activated type I receptor activates intracellular signal
transduction through R-Smad protein. The R-Smad pro-
tein binds with Smad4 protein to form a heteromeric
and enters the nucleus, which regulates the transcription
response [21]. I-Smad inhibits the activation of down-
stream signaling pathway of BMP by antagonizing the
formation of BMP receptor complex [22]. In addition to
the canonical Smad protein signaling pathway, BMP can
also mediate downstream signaling through non-Smad
way [23]. BMP can transmit signals in different tissues
by activating mitogen activated protein kinase (MAPK),
protein kinase C (PKC), phosphoinositide 3 kinase
(PI3K)/Akt, Erk, etc., which plays an important role in
various vascular diseases [24, 25] (Fig. 1).

BMP signaling pathway and neovascularization
Vascular embryonic development is an important event
in the process of embryonic development. The natural
process of human vascular embryonic development
mainly involves vascular endothelial cells, vascular
smooth muscle cells, and perivascular cells, in which the
proliferation, migration, and tube wall formation of
endothelial cells are crucial during this process. Besides
the vascular development from de novo in fetus, angio-
genesis, meaning sprouting vessel wall through previous
existing vessel, in adults occurs extensively in inflamma-
tion, wood healing, and female menstruation [26].
Angiogenesis together with embryonic vascular develop-
ment are named neovascularization, and BMP signaling
pathway are wildly reported to participate in this process
[27, 28]. The research shows that BMP-2, BMP-4, BMP-
6, and BMP-7 proteins are related to the proliferation
and migration of endothelial cells while BMP-9 inhibits
the migration of endothelial cells and the angiogenesis
induced by vascular endothelial growth factor [14]. Su-
zuki et al. suggested that in mouse embryos, low dose of
BMP-9 promoted the formation of vascular tube forma-
tion via activating endothelial proliferation [29]. Richter
et al. found that in mice, BMP-9 promotes the sprouting
angiogenesis derived from endothelial cells through
Smad1/5 activation [30]. Ouarné et al. compared the
vessel normalization in BMP-9 knockout mice and
BMP-10 knockout mice, and they found that BMP-9 and
BMP-10 may play different roles and BMP-9 is compara-
tively more important in vessel normalization [31]. Thus,
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the role of BMP-9 played in angiogenesis may depend
on different microenvironments and different
concentrations.
In addition to endothelial cells, smooth muscle prolif-

eration, differentiation, and migration are also the cru-
cial steps in neovascularization. Researches showed that
BMP signaling plays an important role in angiogenesis
by regulating smooth muscle cell function [32, 33]. Vas-
cular proliferative disorders are characterized by the pro-
liferation of vascular smooth muscle cells and excessive
extracellular matrix synthesis. Nakaoka et al. reported
that in rat carotid artery balloon injury model, the trans-
fer of the BMP-2 gene via adenovirus reduced intimal
hyperplasia significantly, and they evidenced that BMP-2
could inhibit SMC proliferation and suggested the possi-
bility of therapeutic application of BMP-2 for the pre-
vention of vascular proliferative disorders [34]. Zhang
et al. found that in vascular smooth muscle cell, overex-
pression of BMP-2 via adenoviral way could profoundly
augment the smooth muscle cell mobility, and this effect
was through the Erk signaling pathway [35]. Other study
suggested that BMP-4 could inhibit the proliferation of
smooth muscle cells in the proximal pulmonary artery
and promoted the proliferation of smooth muscle cells
in the distal pulmonary artery [36]. Therefore, similar to
endothelial cells, the regulation of BMP signaling path-
way on smooth muscle cells also depends on different
cell sources and different cell culture environments.
Peripheral cells are embedded in the basement mem-

brane of capillary endothelial cells, communicate with

endothelial cells through physical contact and paracrine
signals, and monitor and stabilize the maturation
process of endothelial cells. The neovascularization
process was closely associated with pericytes, especially
in the development of blood brain barrier. Lei et al. re-
ported that BMP-3 regulates blood brain barrier integ-
rity in zebrafish brain by promoting pericyte
development. And knockdown of BMP-3 was accompan-
ied by intracerebral hemorrhage in zebrafish embryos
[15]. Uemura et al. reported that BMP-4, highly
expressed in white matter pericytes, promoted angiogen-
esis, which indicate that of BMP-4 signaling is a poten-
tial therapeutic strategy for treating subcortical small
vessel disease [37]. These findings evidenced the signifi-
cance of BMP in regulating the function of pericytes.

BMP signaling pathway and hemodynamics
Blood flows continuously in the human vascular system
to maintain the normal metabolic balance and the stabil-
ity of the internal environment. The irregular wall shear
stress caused by abnormal hemodynamics is often ac-
companied by a series of vascular disorders. In the intra-
cranial vessels, cerebral aneurysm, arteriovenous
malformation, and arteriovenous fistula are closely re-
lated to abnormal hemodynamics [38–40]. When the
blood flow parameters change, the abnormal wall shear
stress is sensed by the cilia and polysaccharide protein
complex on the membrane surface of vascular endothe-
lial cells, and the wall shear stress stimulation is trans-
formed into biological signal through the ion channel on

Fig. 1 Overview of the BMP signaling pathway. BMPRI and BMPRII are located in the plasma membrane, composed of intracellular domain,
transmembrane domain, and extracellular domain, and the intracellular domain possesses serine threonine kinase activity. BMPRI and BMPRII
together with BMPs form heterotetrameric complex and translate signal to nucleus. This process can be inhibited by inhibitory Smad. Besides
Smad pathway, non-Smad pathway, such as MAPK pathway, can also participate the BMP signal. All the effectors will finally lead to the induction
of targeted gene expression
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the membrane surface. Researchers have shown that the
number of cilia on the surface of vascular endothelial
cells decreased under high wall shear stress and
increased under low wall shear stress [41]. It was found
that the expression of BMP signaling pathway protein
changed with the wall shear stress level. When the blood
flow condition of mouse aortic valve changed, the
expression of BMP-4 protein was upregulated. At the
same time, the adhesion molecules of endothelial cells
dependent on BMP-4 protein were also highly expressed,
and the downstream Smad1/5/8 protein were phosphor-
ylated [42]. It is worth noting that the pro-inflammatory
effect of BMP-4 protein only plays a role when the
hemodynamic conditions of the systemic circulation
change, and the expression of BMP-4 protein is constant
in the pulmonary circulation [43]. Csiszar et al. sug-
gested that in forelimb arteries of aortic banded rats,
high intraluminal pressure could promote BMP-2
expression [44]. At the same time, some studies have
also shown that in the abnormal hemodynamic environ-
ment, there is a cross-linking phenomenon between
BMP signaling pathway and other signaling pathways.
Under the stimulation of abnormal cerebral blood flow,
the number of cilia in vascular endothelial cells de-
creases, BMP Smad signaling pathway is linked with
Wnt/β-catenin signaling pathway, and the expression of
β-Catenin closely dependent on BMP Smad signaling
pathway expression level, becoming the underlying
mechanism leading to atherosclerosis in cerebral
vascular wall [41].

BMP signaling pathway and intracranial aneurysm
IA can be defined as the pathological dilation of cerebral
artery. The subarachnoid hemorrhage mostly caused by
IA are accompanied by high mortality and disability rate
[45]. At present, the etiology of IA has not been clarified
thoroughly. From the pathological perspective, IAs are
often accompanied by atherosclerotic lesions. Many
studies have pointed out that atherosclerotic is an im-
portant part of the development of IA [46, 47]. Athero-
sclerosis is a chronic vascular disease characterized by
lipid metabolism disorder, inflammatory response, and
calcium deposition. BMP participates in atherosclerosis
by regulating endothelial inflammatory response and cell
differentiation [48]. BMP-2 and BMP-4 proteins have
been found to promote inflammatory response in endo-
thelial cells [49]. In ApoE knockout mice, blocking the
BMP signaling pathway can significantly reduce the for-
mation of atherosclerotic plaques; on the contrary, after
the activation of BMP signaling pathway, atherosclerotic
plaques also increased [50].
Another characteristic pathological change of IA is

vascular calcification, which refers to the ectopic depos-
ition of calcium and phosphate in the blood vessels [51].

Gade et al. pointed that calcification is prominently
more prevalent in IA, and IA calcification could be clas-
sified into two types: nonatherosclerotic type and athero-
sclerotic type. They also found that in ruptured
aneurysms, nonatherosclerotic calcification was more
previous. This finding provided us with novel perspec-
tive in understanding the role of calcification in IA and
searching the new therapeutic targets [52]. Sharma et al.
reported that calcification within the aneurysm was
strongly associated with aneurysm size, perioperative
complications, and the clinical outcome [53]. In the
process of vascular calcification, vascular smooth muscle
cells, mesenchymal stem cells, and perivascular cells are
transformed into osteoblast like cells, and extracellular
matrix minerals are gradually deposited in vessel wall. It
was found that the expression of BMP increased in the
area of vascular calcification, indicating that BMP signal-
ing pathway is involved in the pathological process of
vascular calcification [54]. Zhao et al. found that in rat,
BMP-2 knockout could significantly block smooth
muscle cell calcification [55]. Cheng et al. found that the
expression of BMP-2 and bone protein Msx2 of osteo-
blasts increased in the aorta of diabetic patients. The sig-
nal pathway of bmp-2-msx2 may participate in vascular
calcification by promoting myofibroblasts to differentiate
into osteoblasts [56]. In addition, BMP-2 protein can
promote the expression of Runx2 protein, which can
promote the calcification of vascular smooth muscle
cells through oxidative stress and endoplasmic reticulum
stress [57]. When the expression of BMP-2 protein was
blocked by matrix glutamate protein, the differentiation
of intravascular cells into osteoblasts and chondrocytes
decreased [58].

BMP signaling pathway and cerebrovascular
malformation
Cerebrovascular malformation is the congenital develop-
ment abnormality of cerebrovascular, which is prone to
occur in teenagers and middle-aged people, and often
results into seriously events such as cerebral hemorrhage
and epilepsy.
Cerebral arteriovenous malformations (AVMs) are the

most common cerebrovascular malformation, and previ-
ous studies have confirmed that BMP signaling pathway
was closely related to AVMs. Wang et al. highlighted the
specific role of BMP/TGF-β signaling in the etiology of
AVMs [59]. Fu et al. performed RNA sequencing ana-
lysis on 34 unruptured AVM surgical samples and re-
vealed the abnormal changes in the BMP signaling
pathway were significantly associated with microhemor-
rhage in AVMs, and SMAD6 played an important role
in this process. In addition, downregulation of Smad6
expression promoted the formation of endothelial cell
tubes with deficient cell-cell junctions and facilitated the
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acquisition of mesenchymal behavior by endothelial cells
[60].
Cerebral cavernous malformation (CCM) is another

one of common diseases of cerebrovascular malforma-
tion. In recent years, with the progress of imaging tech-
nology, the detection rate of CCM has increased a lot,
accounting for 10% of all cerebrovascular malformations.
Patients with a family history of CCA are often accom-
panied by gene mutations at chromosome 7q long arm
q11 and q22 [61]. Cunha et al. reported that deregulated
TGF-β/BMP signaling was strongly related to CCM [62].
Another research reported that the expression of BMP-6
in CCM patients was elevated. In CCM gene knockout
mice model, blocking BMP signal pathway can signifi-
cantly reduce the volume of vascular malformation [63].
Hereditary telangiectasia (HHT), also known as capil-

lary malformation, is a rare genetic disease of cerebro-
vascular diseases. The incidence rate of HHT is about
1–2 per 100 thousand in population [64]. This kind of
cerebral vascular malformation can be seen in all loca-
tions of the central nervous system, but most commonly
located near the midline of the pons, followed by cere-
bral cortex and ventricular white matter. At present, the
causes of HHT are mostly related to genetic factors, and
the common types of gene mutations include ENG gene,
ALK1 gene, etc., which can be divided into HHT 1 type
and HHT 2 type according to the types of mutant genes
[65]. Eng gene and ALK1 gene belong to TGF-β super-
family. It has been reported that the protein mutations
of Eng gene include gene deletion, gene insertion, and
gene missense mutation, and more than half of ALK1
gene coding proteins belong to gene missense mutation.
Among them, ALK1 gene mediates BMP-9 signaling
pathway in vascular endothelial cells. Some experiments
have applied BMP-9 protein to HHT patients and
achieved good results [66]. This therapy is also expected
to be further applied in the future clinical work.

BMP signaling pathway and ischemic
cerebrovascular disease
Due to the unique functional characteristics of human
brain, brain tissue needs continuous blood flow to sup-
ply glucose and oxygen. When the blood flow of intra-
cranial vessels decreases, the brain tissue maintains the
steady state of blood flow by self-regulation mechanism.
Once this balance is broken, the brain tissue will lead to
ischemic event, causing ischemic stroke. With the deple-
tion of oxygen and energy, the brain tissue gradually ap-
pears energy metabolism disorder, ion imbalance, and
free radical increase and finally leads to irreversible brain
damage. Therefore, the key point in the treatment of is-
chemic cerebrovascular disease lies to the time window.
Restoring cerebral blood flow perfusion as early as pos-
sible can save the ischemic penumbra in most degree.

Once long-term chronic ischemic events occur, promot-
ing angiogenesis in the brain becomes a key factor in the
recovery of neurological function. In hypoxia environ-
ment, the expression of BMP-4, BMP-7, and BMP-9 pro-
tein increased. Drouin et al. suggested that in hypoxic
environment, Smad1/5/8 activation was continuous de-
tected for 5 days, so as the BMP-9 mRNA transcription
level [67]. Yang et al. found that BMP-2 could increase
the motility and migration of smooth muscle cell under
hypoxic cultured circumstance [68]. Some studies also
showed that the expression of BMP-2 and BMP-4 pro-
tein increased in intestinal endothelial cells cultured
in vitro under hypoxia and ischemia conditions [69].
Kim et al. found that BMP-9 protein can promote the
recovery of neural function in mice with ischemia event
[70]. At present, the study of BMP signaling pathway
and ischemic cerebrovascular disease is still in the early
stage. The exploration of BMP signaling pathway is con-
ducive to clarify the mechanism of ischemic cerebrovas-
cular events.

Conclusions
Different BMPs together with various corresponding
downstream cascade molecules determine the complex-
ity of BMP signal pathway. BMP signal pathway plays a
wide role in different tissues and cell environments. In
addition to the BMP signal pathway, BMP signaling
pathway is also cross-linked with other signaling path-
ways to exert a role in human body. In this review, we
have summarized the biology and mechanism of BMP
signaling pathway played in cerebrovascular system. A
large number of human and animal experiments show
that TGF-β superfamily and BMP are closely related to
cerebrovascular system. This review has revealed that
BMP signal pathway broadly participated in cerebrovas-
cular neovascularization and typical CVDs, such as IA,
CCM, and ischemic cerebrovascular event.
However, the current knowledge regarding the BMP

signal pathway in different tissues has been mostly de-
rived from animal models while much less clinical inves-
tigations were implemented. At the same time, we have
also noticed that the researches focusing on the relation-
ship between BMP signal pathway and cerebrovascular
diseases are still limited. For some certain BMP s and
the following cascade molecules, the exact roles they
played in cerebrovascular system are still controversial,
and the current situation requires more detailed studies
targeting this topic. The in-depth study of BMP signal-
ing pathway provides us with a new perspective to ex-
plore the pathogenesis and development mechanism of
cerebrovascular diseases and also is expected to bring
new perspective to the diagnosis and treatment of cere-
brovascular diseases.
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