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Abstract

cell signaling pathways after ischemic stroke in mice.

the animals whose CD4 T cells were impaired.

enhances the Akt/mTOR cell survival signaling pathways.

Background: Inhibition of CD4 T cells reduces stroke-induced infarction by inhibiting neuroinflammation in the
ischemic brain in experimental stroke. Nevertheless, little is known about its effects on neuronal survival signaling
pathways. In this study, we investigated the effects of CD4 T cell deficits on oxidative stress and on the Akt/mTOR

Methods: MHC Il gene knockout C57/BL6 mice, with significantly decreased CD4 T cells, were used. Stroke was
induced by 60-min middle cerebral artery (MCA) occlusion. Ischemic brain tissues were harvested for Western blotting.

Results: The impairment of CD4 T cell production resulted in smaller infarction. The Western blot results showed that
iNOS protein levels robustly increased at 5 h and 24 h and then returned toward baseline at 48 h in wild-type mice
after stroke, and gene KO inhibited iNOS at 5 h and 24 h. In contrast, the anti-inflammatory marker, arginase I, was
found increased after stroke in WT mice, which was further enhanced in the KO mice. In addition, stroke resulted in
increased phosphorylated PTEN, Akt, PRAS40, P70S6, and S6 protein levels in WT mice, which were further enhanced in

Conclusion: The impairment of CD4 T cell products prevents ischemic brain injury, inhibits inflammatory signals, and

Keywords: Stroke, Neuroinflammation, CD4 T cells, Akt, MTOR, PTEN

Background

Neuroinflammation plays critical roles in secondary brain
injury after stroke. Immediately after stroke, neuronal
injury in the ischemic core results in releases of
pro-inflammatory factors such as ATP, glutamate, and
pro-inflammatory cytokines, into the ischemic tissues,
which stimulate the activation of resident microglia, which
transform into macrophages [1-4]. The activated micro-
glia/macrophages and the released inflammatory factors
result in the opening of the blood-brain barrier (BBB) [5]
and the recruitment of monocytes, neutrophils, T cells,
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and T cell subsets, including CD4 and CD8 T cells, into
the ischemic tissue, further enlarging ischemic brain injury
[6-12]. We previously reported that the impairment of
CD 4 T cell production in MHC II gene KO mice reduces
brain injury in mice after focal cerebral ischemia [7].
Nevertheless, the underlying protective mechanisms of
CD4 deficits against stroke are poorly understood.
Neuroinflammation is closely related with oxidative
stress, which is reflected by iNOS and arginase I protein
expression levels [13]. Overactivation of iNOS produces
free radicals such as NO and NO-derived products,
which promote neuroinflammation. Arginase 1 is a
well-recognized marker of the anti-inflammatory M2
macrophage phenotype [14, 15]. How CD4 T cells affect
iNOS and arginase I in the ischemic brain remains elu-
sive. In addition, we and others have reported that stroke
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results in the activation of the Akt/mTOR neuronal sur-
vival signaling pathways [16—18]. In the PI3K/Akt path-
way, PTEN is a phosphatase that dephosphorylates Akt.
Phosphorylated, active Akt blocks apoptosis by phos-
phorylating a number of downstream substrates, includ-
ing the forkhead transcription factor FKHR (FOXO1),
GSK3b, PRAS40, and mTOR. We showed that PRAS40
plays a pivotal role in linking the Akt and the mTOR
pathways. Once active, mTOR causes further phosphor-
ylation of downstream proteins, such as the p70S6 ribo-
somal protein kinasel (S6K1), which regulates protein
translation and cell growth [19]. We have reported that
the overexpression of Akt and PRAS40 prevents brain
injury, while PRAS40 gene KO and mTOR inhibition re-
sults in larger brain infarction [17, 18]. Nevertheless,
how CD4 T cell deficit affects the Akt/mTOR cell signal-
ing pathway has not been studied.

In this study, we investigated the effect of CD4 T cell
deficit on oxidative stress responses and the Akt/mTOR
pathways in a mouse stroke model with transient MCA
suture occlusion by using MHC II gene KO mice with
dramatically reduced CD4 T cells.

Methods

Animals

The study protocols were approved by the Stanford Insti-
tutional Animal Care and Use Committee. Animal experi-
ments were conducted according to the NIH Guidelines
for Care and Use of Laboratory Animals. Mice were
housed under a 12:12-h light-dark cycle and allowed free
access to food and water before the experiment.

Focal cerebral ischemia

Twenty-six C57B6 wild-type (WT) and 24 MHC II gene
knockout (KO) (strain name: B6.12952-H274%1_Ea/J) mice
were used. All animals were purchased from the Jackson
Laboratory, who had confirmed a dramatic reduction of
CD4 T cells in the MHC II gene KO mice. Animals were
anesthetized with 3% isoflurane and maintained by 1.5-
2% isoflurane oxygen-enriched air (fraction of inspired
oxygen [FiO,]: 40%) by a face mask in both male MHC II
gene KO mice and WT mice (25 to 30 g), as we previously
reported [7, 18]. Rectal temperature was maintained at 37
+0.5 °C with a heating pad (Harvard Apparatus, Hollister,
MA). Transient focal ischemia was induced by 60-min
middle cerebral artery occlusion (MCAO), as previously
described. In brief, we introduced a silicone-coated 6-0
monofilament into the left external carotid artery (ECA)
and advanced it from the carotid bifurcation to occlude
the MCA. Isoflurane was discontinued after suture
insertion, and the mice were revived. Mice were
re-anesthetized 60 min later, and the filament was with-
drawn. Sham-operated mice underwent the same proced-
ure, except that the monofilament was not inserted.
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Measurement of cerebral infarction

Three days after stroke, the brains were removed and
cleaved into four coronal sections with a 2.0-mm slice
interval using a rodent brain slicer matrix (Zivic Instru-
ments, Pittsburgh, PA), as we reported [7, 18]. Sections
were incubated in 2% 2,3,5-triphenyletrazolium chloride
(TTC; #T8877, Sigma-Aldrich, St. Louis, MO). Infarct vol-
ume (percent of hemispheric volume) was determined by
one blinded observer and corrected for edema using the
NIH Image J program (Image J 1.37v; Wayne Rasband,
available through NIH) as described previously.

Western blotting

To study the effects of CD4 impairment on protein
levels, mice were euthanized at 5 h, 24 h, and 48 h after
reperfusion by an overdose of isoflurane. The ischemic
hemispheres were collected, and whole cell proteins
were extracted. Western blot was performed, as de-
scribed, in our previous study [20—22]. Table 1 lists the
primary antibodies used.

In each lane, 30 pug proteins were subjected to sodium
dodecyl sulfate—polyacrylamide gel electrophoresis using
4-15% Ready Gel (Bio-Rad Laboratories, Hercules, CA,
USA) for 1.5 h. Protein bands were then transferred to
polyvinylidene fluoride membranes (Millipore, Bedford,
MA, USA) for 1 h, then blocked with 5% nonfat dry milk
(Bio-Rad Laboratories) in PBS/0.05% Tween-20. The
membranes were then incubated in the primary anti-
bodies overnight at 4 °C, followed by horseradish perox-
idase (HRP)-conjugated secondary antibody (anti-rabbit
1: 2000, Cell Signaling Technology) or anti-mouse IgG
for 1 h. Subsequently, immunoreactive bands were visu-
alized with enhanced chemiluminescence (ECL Kit,
Santa Cruz Biotechnology, USA) and exposed to radio-
graphic film to detect the goal protein bands. The mem-
branes were incubated with anti-pB-actin antibodies as an
even protein loading control. Membranes were scanned
using Typhoon trio (GE Healthcare, Waukesha, WI,
USA). Optical band densities were analyzed and normal-
ized with B-actin using Image ] software.

Table 1 Antibodies and their concentrations, manufacturers,
and applications for Western blot

Antibodies Source Dilutions Manufacturer  Catalog no.
iNOS Mouse  1:10,000 BD Biosciences 610431
Arginase | Goat 1:100 Santa Cruz 18354
p-PTEN (Ser380) Rabbit  1:1000 Cell Signaling 9551

p-Akt (Ser473) Rabbit  1:100/1:1000 Cell Signaling 9271
p-PRAS40 (Thr246) Rabbit 1:100/1:1000 Cell Signaling 2997
p-P70S6K Rabbit  1:1000 Cell Signaling 9205

p-S6 Rabbit  1:1000 Cell Signaling 4857
B-Actin Rabbit  1:1000 Cell Signaling 4967
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Statistical analysis

The data were presented as mean + standard deviation
(SD). Means were compared by two-tailed unpaired ¢ test
and one-way analysis of variance (ANOVA) for compari-
son of multiple samples with Prism5 software (GraphPad,
Software for Science, San Diego, CA, USA). Differences
were considered statistically significant for P value < 0.05.

Results

CD4 T cell deficit is neuroprotective in stroke

As consistent with our previous report [7], CD4 T cell def-
icits resulted in smaller infarction (Fig. 1).

CD4 T cell deficits inhibited iNOS but enhanced arginase |
levels after stroke

We determined the iNOS and arginase I protein levels
in WT and MHC II KO mice by using Western blot
(Fig. 2). Brain tissues were collected at 5 h, 24 h, and
48 h after stroke. The results showed that the iNOS pro-
tein levels were dramatically increased at 5 h after
stroke, and then gradually decreased from 24 h and 48 h
(Fig. 2a). Nevertheless, the iNOS protein levels showed
an increase after stroke in KO mice compared with the
sham animals, and its level is significantly lower than in
WT mice at 5 h (Fig. 2a).

Arginase I protein markers were significantly increased
at 5 h and 24 h, but not at 48 h, compared with sham in
WT mice. However, CD4 deficits further resulted in
higher arginase I protein levels at 5 h and 24 h, as well
as 48 h after stroke, compared with WT mice (Fig. 2b).

PRAS40 protein levels were enhanced in the KO mice but
not in WT mice

PRAS40 is a pivotal molecule, linking the Akt and mTOR
pathways. Western blot results showed that P-PRAS40
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protein levels had no significant changes after stroke, from
5 h to 48 h in WT mice, but CD4 T cell deficits signifi-
cantly enhanced its levels at 24 h after stroke (Fig. 3).

The effect of CD4 T cell deficits on the Akt and mTOR
pathway

We then measured the protein levels in the Akt and
mTOR pathways. The results show that p-PTEN and
p-Akt protein levels were significantly increased after
stroke in WT mice, and the impairment of CD4 T cells
resulted in higher protein levels in the MHC II KO mice,
though no significant differences were detected between
the WT and KO mice (Fig. 4).

Similarly, P-P70S6K protein levels were significantly
increased at 5 h and 24 h, but not at 48 h in WT mice.
CD4 T cell deficits further enhanced its protein levels,
although a significant difference between the WT and
KO mice was not reached (Fig. 5a).

The P-S6 protein levels were significantly increased at
5 h, but not at 24 h and 48 h after stroke. Nevertheless,
their levels were significantly increased at all the measured
time points, from 5 h to 48 h, in the KO mice (Fig. 5b).

Discussion

In this study, we have shown some unprecedented re-
sults, suggesting that the protective effects of CD4 T cell
deficits against stroke is linked with inhibited oxidative
stress and enhanced cell signaling survival pathways.
First, iNOS protein levels are significantly inhibited
while the anti-inflammatory marker arginase I protein
levels are enhanced in animals with CD4 T cell deficit.
Second, CD4 T cell deficit does not significantly alter
p-PTEN protein levels after stroke compared with WT
mice, but it significantly enhanced P-Akt protein levels.
Third, although stroke did not significantly alter the
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Fig. 1 The impairment of CD4 T cell production resulted in smaller infarction. Representative TTC staining of infarction is shown. The bar graph
represents the statistical results of infarct sizes. N = 6/group. *P < 0.05, vs WT-sham; P < 0,05, vs CD4(=)-sham; AP < 0.05, vs WT. WT, wild type; CD4(-),
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Fig. 2 a—c The effects of CD4 T cell impairment on iNOS and arginase 1 protein levels. Representative protein bands from Western blot are shown.
The bar graph shows the statistical results of protein levels; the values are fold changes compared with the sham. 3-Actin was probed to show even
protein loading. One-way ANOVA was used to compare the statistical difference of all mice between the WT group and the KO group. N = 3-4/group,
*P <005, vs sham; AP < 0.05, vs 5 h; *P < 0,05, vs 24 h; °P < 0.05, vs WT. WT, wild type; CD4(-), CD4 deficit

phosphorylation of PRAS40 between the Akt and the in stroke is linked with the inhibited pro-inflammatory
mTOR pathways, CD4 T cell deficit results in signifi- and oxidative responses, and with the enhanced activities
cantly higher levels of P-PRAS40 at 24 h compared with  of the Akt/mTOR pathways.

WT mice. Fourth, stroke results in increased P-P70S6K The detrimental effects of CD4 T cells in stroke-induced
and P-S6K protein levels after stroke in WT mice, but  brain injury have been repeatedly confirmed. We and
CD4 T cell deficit significantly promoted their expres- others have reported that CD4 T cells infiltrate into the is-
sion in the KO mice. Taken together, we provide solid chemic brain, suggesting that CD4 T cells are involved in
evidence that the protective effect of CD4 T cell deficits neuroinflammation induced by stroke [6, 8, 12, 23]. In
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Fig. 3 a, b The effects of CD4 T cell impairment on p-PRAS40 protein levels. Representative protein bands from Western blot are shown. The bar
graph shows the statistical results of protein levels. -Actin was probed to show even protein loading. N = 3/group, *P < 0.05, vs sham; AP < 0.05,
vs 5 h. WT, wild type; CD4(-), CD4 deficit




Zhang et al. Chinese Neurosurgical Journal (2018) 4:32 Page 5 of 7

Sham 5h 24h 48h
a wt cD4 (- WT  CD4() wT €D4 () WT  CD4()
pPTEN i o e () S S
b c
M WT 2.54 *
. wr

8 W CD40Yy 50, W, CD4 ()

[ [7]

) S 1.5 *A$

% a A AH#$

3

2 2 107

s K o

& & 0.5

0.0
e I S e S
p-PTEN p-Akt

Fig. 4 a—c Comparison of p-PTEN and p-Akt protein levels in WT and KO mice. Representative protein bands from Western blot are shown. The
bar graph shows the statistical results of protein levels. 3-Actin was probed to show even protein loading N = 3-4/group, *P < 0.05, vs sham; AP < 0.05,
vs 5 h; #P< 0,05, vs 24 h; Sp< 0.05, vs WT. WT, wild type; CD4(—), CD4 deficit
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addition, CD4 T cell deficit reduces infarction [12]. As  with CD4 T cells [7]. Despite these solid studies, how CD4
consistent with other studies, we previously reported that T cells affect brain injury remains poorly understood. We
CD4 T cell deficit in MHC II KO mice results in smaller  speculate that CD4 T cells exacerbate brain injury by acti-
infarction in vivo, and in vitro co-culture of lymphocytes  vating macrophages, as macrophages outnumber any
without CD4 T cells kills less neurons than lymphocytes  other inflammatory cells in the ischemic brain; thus,
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Fig. 5 a-c Western blot results of p-P70S6K and p-56 protein levels in the ischemic brain in WT and KO mice. Representative protein bands from
Western blot are shown. The bar graph shows the statistical results of protein levels. 3-Actin was probed to show even protein loading. N = 3-4/group,
*P <005, vs sham; AP < 005, vs 5 h; *P < 005, vs 24 h. WT, wild type; CD4(-), CD4 deficit
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macrophages may be the final effectors for neuronal injury
induced by inflammatory response after stroke. As macro-
phages are polarized into pro-inflammatory M1 and
anti-inflammatory M2 macrophages, which can be
marked by iNOS and arginase I [24—27], respectively, we
examined their protein levels after stroke. As consistent
with our expectation, CD4 T cell deficit inhibited iNOS
protein levels while it enhanced arginase I protein levels,
suggesting that CD4 T cell deficit resulted in an inhibited
pro-inflammatory response while it enhanced the
anti-inflammatory action.

We and others have extensively studied the neuropro-
tective effects of the Akt/mTOR pathways in stroke.
Phosphorylated Akt, PTEN, mTOR, P70S6K, and S60
protein levels are increased after stroke in the ischemic
brain, suggesting a stimulating effect of stroke on these
protective proteins. We have also reported that the over-
expression of Akt- or mTOR-related downstream mole-
cules inhibits brain injury, while inhibition of Akt and
mTOR exacerbates ischemic damage [16-18, 28].
PRAS40 is a link between the Akt and the mTOR path-
way, and our previous study suggests that PRAS40 KO
enlarges infarction while the overexpression of PRAS40
by lentiviral vector gene transfer inhibits brain injury.
KO has detrimental effects after stroke [18]. In our
current study, we show evidence that the protective ef-
fects of CD4 T cell deficit are strongly linked with the
Akt/mTOR pathways, as both P-Akt levels, and
P-P70S6K and P-S6, two downstream proteins in the
mTOR pathway, are enhanced in the KO mice. These ef-
fects should be distinguished from other reports show-
ing that the Akt/mTOR pathways play important roles
in T cell function [29, 30], as our purpose was to exam-
ine how CD4 T cell deficits affect the Akt/mTOR path-
ways in bran tissues, rather than how the Akt/mTOR
pathways affect CD4 T cells.

Conclusion

The impairment of CD 4 cell production protects against
acute brain injury, inhibited neuroinflammation and oxi-
dative stress, and promoted the Akt/mTOR survival cell
signaling pathways.

Abbreviations

CD4: Cluster of differentiation 4; iNOS: Inducible nitric oxide synthase;

KO: Knockout; P-P70S6K: 70-kDa ribosomal S6 kinase; PRAS40: Proline-rich Akt
substrate of 40 kDa; P-S6: Ribosomal protein S6 kinase; PTEN: Phosphatase
and tensin homolog; WT: Wild type
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