This is a single-center, retrospective study of consecutive patients that underwent microsurgical operations of complex intracranial aneurysms and intraoperative assessment of ICG-VA and FLOW 800 color-coded map from February 2019 to May 2020. The exclusion criteria include (a) patients who were treated via endovascular methods alone, (b) patients allergic to ICG, (c) pediatric patients, (d) patients who had surgical treatment where FLOW 800 technology was not used, and (e) not complex aneurysm. Based on the institutional guidelines, the ethics committee approval was not required for our study.
Procedures details
Before surgery, the patients underwent a routine computed tomography angiography (CTA) or/and digital subtraction angiography (DSA) scan to confirm aneurysm size, location, and morphology. The aneurysm treatment decision was made through a collaboration of vascular neurosurgeons and neuro-interventionalists. Patients were considered for bypass if standard microsurgical clipping was not feasible. Surgical approaches, clippings, and bypasses were all performed in the standard way by the senior author. For approaches, a pterional or lateral supraorbital craniotomy was for aneurysms of the internal carotid artery (ICA), posterior communicating artery (PcomA), the middle cerebral artery (MCA), and the basilar artery (BA). Anterior communicating artery (AcomA) aneurysms were exposed via pterional, lateral supraorbital, or a midline approach. The anterior inferior cerebellar artery (AICA) and posterior inferior cerebellar artery (PICA) aneurysms were clipped by a suboccipital approach. The posterior cerebral artery (PCA) and the superior cerebellar artery (SCA) aneurysms were clipped after subtemporal craniotomy. For clipping, we carefully dissected the arachnoid membrane to achieve the proximal control of the main arteries until a temporary clip was able to be placed. After the aneurysm neck and dome were exposed completely, the surgical findings were consistent with the preoperative angiography to consider a clipping strategy and to select appropriate aneurysm clips. For bypass, ICA/external carotid artery (ECA)-radial artery (RA)-second/third segment of the MCA (M2/M3) bypass, ECA-RA-PCA, or superficial temporal artery (STA)-M2/M3/M4 bypass were usually performed to compensate for the sacrificed blood flow when the aneurysm was isolated or to improve the existing symptoms of cerebral ischemia. Anastomoses were performed under anesthetic burst suppression and with the patient’s systolic blood pressure 10 to 20 mmHg higher than the baseline during temporary occlusion. For intraoperative assessment of aneurysm occlusion, parent, and bypass artery patency, ICG-VA with/without microdoppler ultrasound was performed. After surgery, some patients were admitted to an intensive care unit on basis of individual situation. Routine cranial computed tomography (CT) scans were performed to exclude rebleeding immediately after recovery from general anesthesia and cerebral infarction on the first postoperative day. Transcranial doppler (TCD) ultrasound was performed daily in patients with SAH to monitor the blood flow velocity. Cerebral vasospasm occurred when a mean blood flow velocity ≥ 120 cm/s and/or an augment by ≥ 50 cm/s within 24 h [17]. For patients with possible cerebral vasospasm or other neurological deficits, an urgent cranial CT scan with angiography and perfusion was performed additionally.
Fluorescence angiography and FLOW 800 analysis
An OPMI Pentero surgical microscope with integrated ICG technology (Carl Zeiss GmbH, Oberkochen, Germany) was used for intraoperative analysis of cerebral blood flow. The application of ICG for microsurgery was proven technique and has been described previously in detail [18]. After 25 mg of ICG was administered intravenously, fluorescence could be induced by the integrated light source (about 800 nm in wavelength) and filmed by integrated camera as INFRARED 800 (IR 800) video which enabled a real-time assessment of arterial, cortical, and venous blood flow under visual field. The times of ICG-VA runs was decided by neurosurgeon. In general, intraoperative ICG-VA was performed twice at baseline and after aneurysm treatment.
The FLOW 800 analysis software (Release 2.21, Carl Zeiss GmbH, Oberkochen, Germany) was also integrated with the surgical microscope, allowing for real-time and semi-quantitative analysis of the cerebral blood flow via IR 800 video. An intuitive scale highlights early appearance of fluorescence in red (e.g., arteries), medium appearance in yellow/green (e.g. cortical capillaries), and late appearance in blue (e.g., veins). The color-coded maps generated by FLOW 800 software simply provide clearer indications rather than absolute measurements. To receive detailed fluorescence intensity curve of a specific vessel or area within the field of view, up to 8 definable regions of interest (ROIs) can be selected and analyzed. In our study, ICG-VA and FLOW 800 analysis were performed as clinical indications. The fluorescence curves which have been thoroughly studied by previous studies [14,15,16] were not analyzed because these analyses take longer, which is not available or practical during surgery. In other word, the fluorescence curves of ROIs can provide hemodynamic analysis of the vessels but we did not use them during our operation and depended only on the FLOW 800 color-coded map that is effective in guiding intraoperative procedures.
Data collection
The following variables of every patient were collected retrospectively: age, gender, subarachnoid hemorrhage (SAH), Glasgow Coma Scale (GCS), Hunt-Hess grade, modified Rankin Score (mRS), aneurysm number, size, complexity, location, intraoperative findings, FLOW 800 results, postoperative imaging, and complications.