Manninen PH, Raman SK, Boyle K, El-Beheiry H. Early postoperative complications following neurosurgical procedures. Can J Anesth. 1999;46:7.
Article
PubMed
CAS
Google Scholar
Solaroglu I, Beskonakli E, Kaptanoglu E, Okutan O, Ak F, Taskin Y. Transcortical-transventricular approach in colloid cysts of the third ventricle: surgical experience with 26 cases. Neurosurg Rev. 2004;27:89–92.
Article
PubMed
Google Scholar
Deletis V, Sala F. The role of intraoperative neurophysiology in the protection or documentation of surgically induced injury to the spinal cord. Ann NY Acad Sci. 2001;939:137–44.
Article
PubMed
CAS
Google Scholar
Gerzeny M, Cohen AR. Advances in endoscopic neurosurgery. AORN J. 1998;67:957–65.
Article
PubMed
CAS
Google Scholar
Bruder N, Ravussin P. Recovery from anesthesia and postoperative extubation of neurosurgical patients: a review. J Neurosurg Anesth. 1999;11:282–93.
Article
CAS
Google Scholar
Lo W, Bravo T, Jadhav V, Titova E, Zhang JH, Tang J. NADPH oxidase inhibition improves neurological outcomes in surgically-induced brain injury. Neurosci Let. 2007;414:228–32.
Article
CAS
Google Scholar
Hyong A, Jadhav V, Lee S, Tong W, Rowe J, Zhang JH, Tang J. Rosiglitazone, a PPAR gamma agonist, attenuates inflammation after surgical brain injury in rodents. Brain Res. 2008;1215:218–24.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ayer RE, Jafarian N, Chen W, Applegate RL, Colohan AR, Zhang JH. Preoperative mucosal tolerance to brain antigens and a neuroprotective immune response following surgical brain injury. J Neurosurg. 2012;116:246–53.
Article
PubMed
CAS
Google Scholar
Lekic T, Rolland W, Manaenko A, Krafft PR, Kamper JE, Suzuki H, Hartman RE, Tang J, Zhang JH. Evaluation of the hematoma consequences, neurobehavioral profiles, and histopathology in a rat model of pontine hemorrhage. J Neurosurg. 2013;118:465–77.
Article
PubMed
Google Scholar
Sulejczak D, Grieb P, Walski M, Frontczak-Baniewicz M. Apoptotic death of cortical neurons following surgical brain injury. Folia Neuropathol. 2008;46:213–9.
PubMed
Google Scholar
Dewan MC, Rattani A, Fieggen G, Arraez MA, Servadei F, Boop FA, Johnson WD, Warf BC, Park KB. Global neurosurgery: the current capacity and deficit in the provision of essential neurosurgical care. Executive Summary of the Global Neurosurgery Initiative at the Program in Global Surgery and Social Change. J Neurosurg. 2018;130:1055–64.
Article
Google Scholar
Menon D. Critical care medicine: management of raised intracranial pressure. Oxford Textbook of Medicine. 2003;2:1256.
Google Scholar
Gomes JA, Stevens RD, Lewin JJ, Mirski MA, Bhardwaj A. Glucocorticoid therapy in neurologic critical care. Crit Care Med. 2005;33:1214–24.
Article
PubMed
CAS
Google Scholar
Jadhav V, Zhang JH. Surgical brain injury: prevention is better than cure. Front Biosci. 2008;13:3793–7.
Article
PubMed
Google Scholar
Studdert DM, Mello MM, Sage WM, DesRoches CM, Peugh J, Zapert K, Brennan TA. Defensive medicine among high-risk specialist physicians in a volatile malpractice environment. JAMA-J Am Med Assoc. 2005;293:2609–17.
Article
CAS
Google Scholar
Mello MM, Studdert DM, DesRoches CM, Peugh J, Zapert K, Brennan TA, Sage WM. Effects of a malpractice crisis on specialist supply and patient access to care. Ann Surg. 2005;242:621.
Article
PubMed
PubMed Central
Google Scholar
Pownall M. Tissue damage is commonest cause of surgical negligence suits. BMJ-Brit Med J. 1999 Mar 13;318:692.
Article
Google Scholar
Tataranu L, Gorgan MR, Ene BO, Ciubotaru V, Sandu A, Dediu A. Neuroprotection against surgically induced brain injury. Rom Neurosurg. 2007;15:3–12.
Google Scholar
Frontczak-Baniewicz M, Gordon-Krajcer W, Walski M. The immature endothelial cell in new vessel formation following surgical injury in rat brain. Neuroendocrinol Lett. 2006;27:539–46.
PubMed
Google Scholar
McDonald SJ, Sun M, Agoston DV, Shultz SR. The effect of concomitant peripheral injury on traumatic brain injury pathobiology and outcome. J Neuroinflamm. 2016;13:90.
Article
CAS
Google Scholar
Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood–brain barrier. Neurobiol Dis. 2010;37:13–25.
Article
PubMed
CAS
Google Scholar
Abbott NJ, Rönnbäck L, Hansson E. Astrocyte–endothelial interactions at the blood–brain barrier. Nat Rev Neurosci. 2006;7:41.
Article
PubMed
CAS
Google Scholar
Alvarez JI, Teale JM. Breakdown of the blood brain barrier and blood–cerebrospinal fluid barrier is associated with differential leukocyte migration in distinct compartments of the CNS during the course of murine NCC. J Neuroimm. 2006 1;173(1-2):45-55.
Article
PubMed
CAS
Google Scholar
Amouzeshi A, Pourbagher-Shahri AM. Effects of endocannabinoid system, synthetic and nonsynthetic cannabinoid drugs on traumatic brain injury outcome: a narrative review. J Surg Trauma. 2019;7:3–14.
Google Scholar
Campbell M, Hanrahan F, Gobbo OL, Kelly ME, Kiang AS, Humphries MM, Nguyen AT, Ozaki E, Keaney J, Blau CW, Kerskens CM. Targeted suppression of claudin-5 decreases cerebral oedema and improves cognitive outcome following traumatic brain injury. Nat Commun. 2012;3:849.
Article
PubMed
CAS
Google Scholar
Raghupathi R. Cell death mechanisms following traumatic brain injury. Brain Pathol. 2004;14:215–22.
Article
PubMed
Google Scholar
Rosenberg GA, Yang Y. Vasogenic edema due to tight junction disruption by matrix metalloproteinases in cerebral ischemia. Neurosurg Focus. 2007;22:1–9.
Article
Google Scholar
Schaefer PW, Buonanno FS, Gonzalez RG, Schwamm LH. Diffusion-weighted imaging discriminates between cytotoxic and vasogenic edema in a patient with eclampsia. Stroke. 1997;28:1082–5.
Article
PubMed
CAS
Google Scholar
Liang D, Bhatta S, Gerzanich V, Simard JM. Cytotoxic edema: mechanisms of pathological cell swelling. Neurosurg Focus. 2007;22:1–9.
Article
CAS
Google Scholar
Unterberg AW, Stover J, Kress B, Kiening KL. Edema and brain trauma. Neuroscience. 2004;129:1019–27.
Article
CAS
Google Scholar
Marmarou A, Barzo P, Fatouros P, Yamamoto T, Bullock R, Young H. Traumatic brain swelling in head injured patients: brain edema or vascular engorgement? In: James HE, Marshall LF, Raulen HJ, Baethmann A, Marmarou A., Ito U. et al., editors. Brain edema X. Acta Neur S 1997; 70:68-70. Vienna: Springer.
Marmarou A, Fatouros PP, Barzó P, Portella G, Yoshihara M, Tsuji O, Yamamoto T, Laine F, Signoretti S, Ward JD, Bullock MR. Contribution of edema and cerebral blood volume to traumatic brain swelling in head-injured patients. J Neurosurg. 2000;93:183–93.
Article
PubMed
CAS
Google Scholar
Matchett G, Hahn J, Obenaus A, Zhang J. Surgically induced brain injury in rats: the effect of erythropoietin. J Neurosci Meth. 2006;158:234–41.
Article
CAS
Google Scholar
Yamaguchi M, Jadhav V, Obenaus A, Colohan A, Zhang JH. Matrix metalloproteinase inhibition attenuates brain edema in an in vivo model of surgically-induced brain injury. Neurosurgery. 2007;61:1067–76.
Article
PubMed
Google Scholar
Jadhav V, Yamaguchi M, Obenaus A, Zhang JH. Matrix metalloproteinase inhibition attenuates brain edema after surgical brain injury. In: Steiger HJ, editor. Acta Neur S 2008;102:357-361. Vienna: Springer.
Mokri B. The Monro–Kellie hypothesis: applications in CSF volume depletion. Neurology. 2001;56:1746–8.
Article
PubMed
CAS
Google Scholar
Sherchan P, Huang L, Akyol O, Reis C, Tang J, Zhang JH. Recombinant Slit2 reduces surgical brain injury induced blood brain barrier disruption via Robo4 dependent Rac1 activation in a rodent model. Sci Rep-UK. 2017;7:746.
Article
CAS
Google Scholar
Sherchan P, Huang L, Wang Y, Akyol O, Tang J, Zhang JH. Recombinant Slit2 attenuates neuroinflammation after surgical brain injury by inhibiting peripheral immune cell infiltration via Robo1-srGAP1 pathway in a rat model. Neurobiol Dis. 2016;85:164–73.
Article
PubMed
CAS
Google Scholar
Petty MA, Lo EH. Junctional complexes of the blood–brain barrier: permeability changes in neuroinflammation. Prog Neurobiol. 2002;68:311–23.
Article
PubMed
CAS
Google Scholar
Yoshimura A, Shichita T. Post-ischemic inflammation in the brain. Front Immunol. 2012;3:132.
Article
PubMed
PubMed Central
Google Scholar
Zakhary G, Sherchan P, Li Q, Tang J, Zhang JH. Modification of kynurenine pathway via inhibition of kynurenine hydroxylase attenuates surgical brain injury complications in a male rat model. J Neurosci Res. 2019;doi:10.1002/jnr.24489.
Yang W, Liu Y, Liu B, Tan H, Lu H, Wang H, Yan H. Treatment of surgical brain injury by immune tolerance induced by intrathymic and hepatic portal vein injection of brain antigens. Sci Rep-UK. 2016;6:32030.
Article
CAS
Google Scholar
Xiong Y, Mahmood A, Chopp M. Current understanding of neuroinflammation after traumatic brain injury and cell-based therapeutic opportunities. Chinese J Traumatol. 2018;21:137–51.
Article
Google Scholar
Kim CH, McBride DW, Raval R, Sherchan P, Hay KL, Gren EC, Kelln W, Lekic T, Hayes WK, Bull BS, Applegate R. Crotalus atrox venom preconditioning increases plasma fibrinogen and reduces perioperative hemorrhage in a rat model of surgical brain injury. Sci Rep-UK. 2017;7:40821.
Article
CAS
Google Scholar
Kim CH, McBride DW, Sherchan P, Person CE, Gren EC, Kelln W, Lekic T, Hayes WK, Tang J, Zhang JH. Crotalus helleri venom preconditioning reduces postoperative cerebral edema and improves neurological outcomes after surgical brain injury. Neurobiol Dis. 2017;107:66–72.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lo W, Bravo T, Jadhav V, Titova E, Zhang JH, Tang J. NADPH oxidase inhibition improves neurological outcomes in surgically-induced brain injury. Neurosci Let. 2007;414:228–32.
Article
CAS
Google Scholar
Lee S, Jadhav V, Ayer R, Rojas H, Hyong A, Lekic T, Stier G, Martin R, Zhang JH. The antioxidant effects of melatonin in surgical brain injury in rats. In: Steiger HJ, editor. Acta Neur S 2008;102:367-371. Vienna: Springer.
Lee S, Jadhav V, Ayer RE, Rojas H, Hyong A, Lekic T, Tang J, Zhang JH. Dual effects of melatonin on oxidative stress after surgical brain injury in rats. J Pineal Res. 2009;46:43–8.
Article
PubMed
CAS
Google Scholar
Bravo TP, Matchett GA, Jadhav V, Martin RD, Jourdain A, Colohan A, Zhang JH, Tang J. Role of histamine in brain protection in surgical brain injury in mice. Brain Res. 2008;1205:100–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Di F, Yan-ting G, Hui L, Tao T, Zai-hua X, Xue-ying S, Hong-li X, Yun-jie W. Role of aminoguanidine in brain protection in surgical brain injury in rat. Neurosci Lett. 2008;448:204–7.
Article
PubMed
CAS
Google Scholar
Hao W, Wu XQ, Xu RT. The molecular mechanism of aminoguanidine-mediated reduction on the brain edema after surgical brain injury in rats. Brain Res. 2009;1282:156–61.
Article
PubMed
CAS
Google Scholar
Jadhav V, Ostrowski RP, Tong W, Matus B, Jesunathadas R, Zhang JH. Cyclo-oxygenase-2 mediates hyperbaric oxygen preconditioning-induced neuroprotection in the mouse model of surgical brain injury. Stroke. 2009;40:3139–42.
Article
PubMed
PubMed Central
CAS
Google Scholar
Westra D, Chen W, Tsuchiyama R, Colohan A, Zhang JH. Pretreatment with normobaric and hyperbaric oxygenation worsens cerebral edema and neurologic outcomes in a murine model of surgically induced brain injury. In: Zhang J., Colohan A, editors. Intracerebral hemorrhage research. Acta Neur S 2011;111:243-251. Springer, Vienna.
Khatibi NH, Jadhav V, Saidi M, Chen W, Martin R, Stier G, Tang J, Zhang JH. Granulocyte colony-stimulating factor treatment provides neuroprotection in surgically induced brain injured mice. In: Zhang J., Colohan A, editors. Intracerebral hemorrhage research. Acta Neur S 2011;111:265-269. Springer, Vienna..
Khatibi NH, Jadhav V, Matus B, Fathali N, Martin R, Applegate R, Tang J, Zhang JH. Prostaglandin E 2 EP 1 Receptor inhibition fails to provide neuroprotection in surgically induced brain-injured mice. In: Zhang J., Colohan A, editors. Intracerebral hemorrhage research. Acta Neur S 2011;111:277-281. Springer, Vienna.
Jafarian N, Ayer R, Eckermann J, Tong W, Applegate RL, Stier G, Martin R, Tang J, Zhang JH. Mucosal tolerance to brain antigens preserves endogenous TGFβ-1 and improves neurological outcomes following experimental craniotomy. In: Zhang J., Colohan A, editors. Intracerebral hemorrhage research. Acta Neur S 2011;111:283-287. Springer, Vienna.
Eckermann JM, Chen W, Jadhav V, Hsu FP, Colohan AR, Tang J, Zhang JH. Hydrogen is neuroprotective against surgically induced brain injury. Med Gas Res. 2011;1:7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Benggon M, Chen H, Applegate R, Martin R, Zhang JH. The effect of dexmedetomidine on brain edema and neurological outcomes in surgical brain injury in rats. Anesth Analg. 2012;115:154.
Article
PubMed
PubMed Central
CAS
Google Scholar
Manaenko A, Sun X, Kim CH, Yan J, Ma Q, Zhang JH. PAR-1 antagonist SCH79797 ameliorates apoptosis following surgical brain injury through inhibition of ASK1-JNK in rats. Neurobiol Dis. 2013;50:13–20.
Article
PubMed
CAS
Google Scholar
Zheng Y, Kang J, Liu B, Fan W, Wu Q, Luo K, Yan H. An experimental study on thymus immune tolerance to treat surgical brain injury. Chinese Med J. 2014;127:685–90.
CAS
Google Scholar
Xu FF, Sun S, Ho AS, Lee D, Kiang KM, Zhang XQ, Wang AM, Wu EX, Lui WM, Liu BY, Leung GK. Effects of progesterone vs. dexamethasone on brain oedema and inflammatory responses following experimental brain resection. Brain Injury. 2014;28:1594–601.
Article
PubMed
Google Scholar
Huang KF, Hsu WC, Hsiao JK, Chen GS, Wang JY. Collagen-glycosaminoglycan matrix implantation promotes angiogenesis following surgical brain trauma. BioMed Res Int. 2014;2014:627409.
Google Scholar
Huang L, Sherchan P, Wang Y, Reis C, Applegate RL, Tang J, Zhang JH. Phosphoinositide 3-kinase gamma contributes to neuroinflammation in a rat model of surgical brain injury. J Neurosci. 2015;35:10390–401.
Article
PubMed
PubMed Central
CAS
Google Scholar
Huang L, Woo W, Sherchan P, Khatibi NH, Krafft P, Rolland W, Applegate RL, Martin RD, Zhang J. Valproic acid pretreatment reduces brain edema in a rat model of surgical brain injury. In: Applegate R., Chen G., Feng H., Zhang J., editors. Brain Edema XVI. Acta Neur S 2016;121:305-310. Cham: Springer.
Komanapalli ES, Sherchan P, Rolland W, Khatibi N, Martin RD, Applegate RL, Tang J, Zhang JH. Epsilon aminocaproic acid pretreatment provides neuroprotection following surgically induced brain injury in a rat model. In: Applegate R., Chen G., Feng H., Zhang J., editors. Brain Edema XVI. Acta Neur S 2016;121:311-315. Cham: Springer.
Pakkianathan C, Benggon M, Khatibi NH, Chen H, Marcantonio S, Applegate R, Tang J, Zhang J. Propofol pretreatment fails to provide neuroprotection following a surgically induced brain injury rat model. In: Applegate R., Chen G., Feng H., Zhang J., editors. Brain Edema XVI. Acta Neur S 2016;121:323-327. Cham: Springer.
Wang Y, Sherchan P, Huang L, Akyol O, McBride DW, Zhang JH. Naja sputatrix venom preconditioning attenuates neuroinflammation in a rat model of surgical brain injury via PLA2/5-LOX/LTB4 cascade activation. Sci Rep-UK. 2017;7:5466.
Article
CAS
Google Scholar
Wang Y, Sherchan P, Huang L, Akyol O, McBride DW, Zhang JH. Multiple mechanisms underlying neuroprotection by secretory phospholipase A2 preconditioning in a surgically induced brain injury rat model. Exp Neurol. 2018;300:30–40.
Article
PubMed
CAS
Google Scholar
Xiao Y, Li G, Chen Y, Zuo Y, Rashid K, He T, Feng H, Zhang JH, Liu F. Milk fat globule-epidermal growth factor-8 pretreatment attenuates apoptosis and inflammation via the integrin-β3 pathway after surgical brain injury in rats. Front Neurol. 2018;9:96.
Article
PubMed
PubMed Central
Google Scholar
Akyol O, Sherchan P, Yilmaz G, Reis C, Ho WM, Wang Y, Huang L, Solaroglu I, Zhang JH. Neurotrophin-3 provides neuroprotection via TrkC receptor dependent pErk5 activation in a rat surgical brain injury model. Exp Neurol. 2018;307:82–9.
Article
PubMed
CAS
PubMed Central
Google Scholar
Chen JH, Hsu WC, Huang KF, Hung CH. Neuroprotective effects of collagen-glycosaminoglycan matrix implantation following surgical brain injury. Mediat Inflamm. 2019;2019:6848943.
Google Scholar
Huang KF, Hsu W-C, Hsiao JK, Chen GS, Wang JY. Collagen-glycosaminoglycan matrix implantation promotes angiogenesis following surgical brain trauma. BioMed Res Int. 2014;2014:672409.
PubMed
PubMed Central
Google Scholar
Li Z, Liu W, Kang Z, Lv S, Han C, Yun L, Sun X, Zhang JH. Mechanism of hyperbaric oxygen preconditioning in neonatal hypoxia–ischemia rat model. Brain Res. 2008;1196:151–6.
Article
PubMed
CAS
Google Scholar
Wad K, Ito M, Miyazawa T, Katoh H, Nawashiro H, Shima K, Chigasaki H. Repeated hyperbaric oxygen induces ischemic tolerance in gerbil hippocampus. Brain Res. 1996;740:15–20.
Article
Google Scholar
Yunoki M, Nishio S, Ukita N, Anzivino MJ, Lee KS. Hypothermic preconditioning induces rapid tolerance to focal ischemic injury in the rat. Exp Neurol. 2003;181:291–300.
Article
PubMed
Google Scholar
Park DH, Kang HY. Abstract TP132: The combination therapy of intravenous mannitol and hypoxic preconditioned stem cells for ischemic stroke. Stroke. 2019;50(Suppl 1):ATP132.
Google Scholar
Jang MJ, You D, Park JY, Kim K, Aum J, Lee C, Song G, Shin HC, Suh N, Kim YM, Kim CS. Hypoxic preconditioned mesenchymal stromal cell therapy in a rat model of renal ischemia-reperfusion injury: development of optimal protocol to potentiate therapeutic efficacy. Intl J Stem Cells. 2018;11:157.
Article
CAS
Google Scholar
Mayor A. Greek fire, poison arrows, and scorpion bombs: biological and chemical warfare in the ancient world. New York: Overlook Press; 2008.
Google Scholar
Bhattacharjee P, Bhattacharyya D. Therapeutic use of snake venom components: a voyage from ancient to modern India. Mini-Rev Org Chem. 2014;11:45–54.
Article
CAS
Google Scholar
Pennington MW, Czerwinski A, Norton RS. Peptide therapeutics from venom: current status and potential. Bioorg Med Chem. 2018;26:2738–58.
Article
PubMed
CAS
Google Scholar
Waheed H, Moin SF, Choudhary MI. Snake venom: from deadly toxins to life-saving therapeutics. Curr Med Chem. 2017;24:1874–91.
Article
PubMed
CAS
Google Scholar
King G, editor. Venoms to drugs: Venom as a source for the development of human therapeutics. Cambridge: Royal Society of Chemistry; 2015.
Google Scholar
Pla D, Bande BW, Welton RE, Paiva OK, Sanz L, Segura A, Wright CE, Calvete JJ, Gutiérrez JM, Williams DJ. Proteomics and antivenomics of Papuan black snake (Pseudechis papuanus) venom with analysis of its toxicological profile and the preclinical efficacy of Australian antivenoms. J Proteomics. 2017;150:201–15.
Article
PubMed
CAS
Google Scholar
Fox J, Gutiérrez J. Understanding the snake venom metalloproteinases: an interview with Jay Fox and José María Gutiérrez. Toxins. 2017;9:33.
Article
PubMed Central
Google Scholar
Camacho E, Escalante T, Remans K, Gutiérrez JM, Rucavado A. Site mutation of residues in a loop surrounding the active site of a PI snake venom metalloproteinase abrogates its hemorrhagic activity. Biochem Bioph Res Co. 2019;512:859–63.
Article
CAS
Google Scholar
Cardoso FC, Ferraz CR, Arrahman A, Xie C, Casewell NR, Lewis RJ, Kool J. Multifunctional toxins in snake venoms and therapeutic implications: from pain to hemorrhage and necrosis. Front Ecol Evol. 2019;7:218.
Article
Google Scholar
Rempe RG, Hartz AM, Bauer B. Matrix metalloproteinases in the brain and blood–brain barrier: versatile breakers and makers. J Cereb Blood F Met. 2016;36:1481–507.
Article
CAS
Google Scholar
Lambrecht BN, Vanderkerken M, Hammad H. The emerging role of ADAM metalloproteinases in immunity. Nat Rev Immunol. 2018;18:745–58.
Article
PubMed
CAS
Google Scholar
Prezoto BC, Kato EE, Gonçalves LR, Sampaio SC, Sano-Martins IS. Elevated plasma levels of hepatocyte growth factor in rats experimentally envenomated with Bothrops jararaca venom: role of snake venom metalloproteases. Toxicon. 2019;162:9–14.
Article
PubMed
CAS
Google Scholar
Ducruet AF, Zacharia BE, Hickman ZL, Grobelny BT, Yeh ML, Sosunov SA, Connolly ES Jr. The complement cascade as a therapeutic target in intracerebral hemorrhage. Exp Neurol. 2009;219:398–403.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rynkowski MA, Kim GH, Garrett MC, Zacharia BE, Otten ML, Sosunov SA, Komotar RJ, Hassid BG, Ducruet AF, Lambris JD, Connolly ES. C3a receptor antagonist attenuates brain injury after intracerebral hemorrhage. J Cereb Blood F Met. 2009;29:98–107.
Article
CAS
Google Scholar
Aronowski J, Hall CE. New horizons for primary intracerebral hemorrhage treatment: experience from preclinical studies. Neurol Res. 2005;27:268–79.
Article
PubMed
Google Scholar
Amura CR, Renner B, Lyubchenko T, Faubel S, Simonian PL, Thurman JM. Complement activation and toll-like receptor-2 signaling contribute to cytokine production after renal ischemia/reperfusion. Mol Immunol. 2012;52:249–57.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xi G, Wagner KR, Keep RF, Hua Y, de Courten-Myers GM, Broderick JP, Brott TG, Hoff JT, Muizelaar JP. Role of blood clot formation on early edema development after experimental intracerebral hemorrhage. Stroke. 1998;29:2580–5.
Article
PubMed
CAS
Google Scholar
Holers VM, Thurman JM. The alternative pathway of complement in disease: opportunities for therapeutic targeting. Mol Immunol. 2004;41:147–52.
Article
PubMed
CAS
Google Scholar
Zelanis A, Huesgen PF, Oliveira AK, Tashima AK, Serrano SM, Overall CM. Snake venom serine proteinases specificity mapping by proteomic identification of cleavage sites. J Proteomics. 2015;113:260–7.
Article
PubMed
CAS
Google Scholar
Amorim F, Menaldo D, Carone S, Silva T, Sartim M, De Pauw E, Quinton L, Sampaio S. New insights on moojase, a thrombin-like serine protease from Bothrops moojeni snake venom. Toxins. 2018;10:500.
Article
PubMed Central
CAS
Google Scholar
Braud S, Parry MA, Maroun R, Bon C, Wisner A. The contribution of residues 192 and 193 to the specificity of snake venom serine proteinases. J Biol Chem. 2000;275:1823–8.
Article
PubMed
CAS
Google Scholar
Costa C, Belchor M, Rodrigues C, Toyama D, de Oliveira M, Novaes D, Toyama M. Edema induced by a Crotalus durissus terrificus venom serine protease (Cdtsp 2) involves the PAR pathway and PKC and PLC activation. Int J Mol Sci. 2018;19:2405.
Article
PubMed Central
CAS
Google Scholar
Weinhard L, Neniskyte U, Vadisiute A, di Bartolomei G, Aygün N, Riviere L, Zonfrillo F, Dymecki S, Gross C. Sexual dimorphism of microglia and synapses during mouse postnatal development. Dev Neurobiol. 2018;78:618–26.
Article
PubMed
PubMed Central
Google Scholar
Timaru-Kast R, Luh C, Gotthardt P, Huang C, Schäfer MK, Engelhard K, Thal SC. Influence of age on brain edema formation, secondary brain damage and inflammatory response after brain trauma in mice. PLOS One. 2012;7:e43829.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li Q, Li J, Zhang L, Wang B, Xiong L. Preconditioning with hyperbaric oxygen induces tolerance against oxidative injury via increased expression of heme oxygenase-1 in primary cultured spinal cord neurons. Life sciences. 2007;80:1087–93.
Article
PubMed
CAS
Google Scholar
Abati E, Bresolin N, Comi GP, Corti S. Preconditioning and cellular engineering to increase the survival of transplanted neural stem cells for motor neuron disease therapy. Mol Neurobiol. 2019;56:3356–67.
Article
PubMed
CAS
Google Scholar